Practice paper (calculator 2): full worked solutions

85% = £2581 $1\% = \frac{\text{f}258}{85}$ $100\% = \frac{\text{f}258}{85} \times 100$ = £303.53 $(0.45 \times 0.78)^2 \approx (0.5 \times 0.8)^2 = 0.4^2 = 0.16$ 2 3 a $\frac{2x-5}{11} = 3$ 2x - 5 = 332x = 38*x* = 19 **b** $x^2 - x - 42 = 0$ (x + 6)(x - 7) = 0x = -6 or 7**a** gradient $= \frac{k-2}{-2-3} = \frac{k-2}{-5}$ 4 $\frac{k-2}{-5} = \frac{4}{5}$ 5(k-2) = -205k - 10 = -205*k* = -10 *k* = -2 **b** $y - 2 = \frac{4}{5}(x-3)$ 5y - 10 = 4x - 125y = 4x - 2 or $y = \frac{4}{5}x - \frac{2}{5}$ 5 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ gives: $=\frac{3\pm\sqrt{(-3)^2-4\times1\times-6}}{2\times1}$ $=\frac{3\pm\sqrt{9+24}}{2}$ $=\frac{3\pm\sqrt{33}}{2}$ $x = \frac{3 + \sqrt{33}}{2}$ or $\frac{3 - \sqrt{33}}{2}$ x = 4.37 or -1.37 (to 2 d.p.) 6 a Completing the square: $y = x^2 - 2x - 3 = (x-1)^2 - 1 - 3 = (x-1)^2 - 4$ Coordinates of turning point are (1, -4). **b** To find where the curve intersects the *x*-axis: $x^2 - 2x - 3 = 0$ (x - 3)(x + 1) = 0x = 3 or -1To find where the curve intersects the *y*-axis: when x = 0, $y = (0)^2 - 2 \times 0 - 3 = -3$ 5 4 3 2 1 (3, 0) 5^{x}

(1, -4)

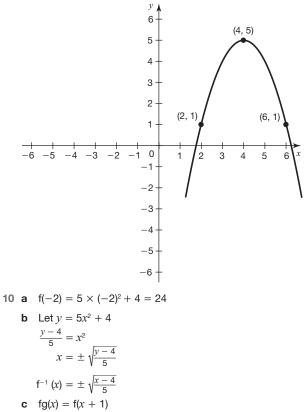
7 **a** Equating expressions for *y*:

$$10x^2 - 5x - 2 = 2x - 3$$

 $10x^2 - 7x + 1 = 0$
 $(5x - 1)(2x - 1) = 0$
 $x = \frac{1}{5}$ or $x = \frac{1}{2}$
Substituting $x = \frac{1}{5}$ into $y = 2x - 3$ gives $y = -2\frac{3}{5}$
Substituting $x = \frac{1}{2}$ into $y = 2x - 3$ gives $y = -2$
 $x = \frac{1}{5}$ and $y = -2\frac{3}{5}$ or $x = \frac{1}{2}$ and $y = -2$
b the two points where the curve and line intersect
8 $\frac{3\sqrt{3} - \sqrt{2}}{5} = \frac{(3\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}{5}$

$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} (\sqrt{3} + \sqrt{2})$$
$$= \frac{9 + 3\sqrt{6} - \sqrt{6} - 2}{3 + \sqrt{6} - \sqrt{6} - 2} = \frac{7 + 2\sqrt{6}}{1} = 7 + 2\sqrt{6}$$

- 9 y = f(x) to y = f(x 1) + 1 is a translation of 1 unit to the right and 1 unit up (i.e. a translation of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$):
 - (1, 0) will become (2, 1)
 - (5, 0) will become (6, 1)
 - (3, 4) will become (4, 5)



$$= 5(x + 1)^2 + 4$$

11 a Angles VRP and VRQ are right angles because V is directly above R.

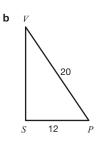
Using Pythagoras' theorem:

$$20^2 = VR^2 + 16^2$$

$$400 = VR^2 + 256$$

$$VR^2 = 144$$

$$VR = 12 \,\mathrm{cm}$$



Using Pythagoras' theorem: $20^2 = VS^2 + (24 \div 2)^2$ $400 = VS^2 + 144$

$$VS^{2} = 256$$

 $VS = 16 \,\mathrm{cm}$

$$S$$
 12 P

Using Pythagoras' theorem: $16^2 = RS^2 + 12^2$ $256 = RS^2 + 144$ $RS^2 = 112$

 $RS = 10.6 \, \text{cm}$ (to 3 s.f.)

$$\mathbf{c} \quad \cos\theta = \frac{10.6}{16}$$

$$\theta = \cos^{-1}\left(\frac{10.6}{16}\right)$$

12 Let Amy's age = x years.

Amy's mother's age = 3x years.

In 12 years time, Amy will be x + 12 and her mother will be 3x + 12

$$x + 12 = \frac{3x + 12}{2}$$

2x + 24 = 3x + 12
x = 12

Amy's mother is 36 years old.

13 **a**
$$l = \frac{\theta}{360} \times 2\pi r = \frac{35}{360} \times 2\pi \times 8 = 4.89 \,\mathrm{cm} \,\mathrm{(to} \, 2 \,\mathrm{d.p.})$$

b $A = \frac{\theta}{360} \pi r^2 = \frac{35}{360} \pi \times 8^2 = 19.55 \,\mathrm{cm}^2 \,\mathrm{(to} \, 2 \,\mathrm{d.p.})$
14 $\frac{1}{3x^2 + 5x - 2} \div \frac{1}{9x^2 - 1} = \frac{1}{3x^2 + 5x - 2} \times \frac{9x^2 - 1}{1}$
 $= \frac{1}{(3x - 1)(x + 2)} \times (3x - 1)(3x + 1)$
 $= \frac{3x + 1}{x + 2}$
 $a = 3, b = 1, c = 1, d = 2$

15 multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144 ...

multiples of 16: 16, 32, 48, 64, 80, 96, 112, 128, 144 ... multiples of 18: 18, 36, 54, 72, 90, 108, 126, 144 ...

- a The first number to appear in 2 lists is 36.36 days
- b The first number to appear in all 3 lists is 144.144 days

16 **a** i
$$\overrightarrow{AM} = \overrightarrow{AO} + \frac{1}{2}\overrightarrow{OB}$$

$$= -\mathbf{a} + \frac{\mathbf{b}}{2}$$

$$= \frac{\mathbf{b}}{2} - \mathbf{a}$$
ii $\overrightarrow{AR} = \frac{2}{3}\overrightarrow{AM}$

$$= \frac{2}{3}\left(\frac{\mathbf{b}}{2} - \mathbf{a}\right)$$

$$= \frac{\mathbf{b}}{3} - \frac{2\mathbf{a}}{3}$$
b $\overrightarrow{BP} = \overrightarrow{BO} + \overrightarrow{OP} = -\mathbf{b} + \frac{\mathbf{a}}{2} = \frac{\mathbf{a}}{2} - \mathbf{b} = \frac{1}{2}(\mathbf{a} - 2\mathbf{b})$
 $\overrightarrow{BR} = \overrightarrow{BA} + \overrightarrow{AR} = \mathbf{a} - \mathbf{b} + \frac{\mathbf{b}}{3} - \frac{2\mathbf{a}}{3} = \frac{\mathbf{a}}{3} - \frac{2\mathbf{b}}{3} = \frac{1}{3}(\mathbf{a} - 2\mathbf{b})$

 \overrightarrow{BP} and \overrightarrow{BR} have the same vector part ($\mathbf{a} - 2\mathbf{b}$) and are therefore parallel. As they both pass through point *B*, points *P* and *R* lie on the same straight line.

17 $2.535 \le T < 2.545$

$$9.75 \le g < 9.85$$

Upper bound for h will be when T has its upper bound and g has its upper bound.

$$h = \frac{gT^2}{2} = \frac{9.8 \times 2.545^2}{2} = 31.73742 = 31.74 \,\mathrm{m} \,\mathrm{(to} \, 4 \,\mathrm{s.f.})$$

Lower bound for \boldsymbol{h} will be when T has its lower bound and \boldsymbol{g} has its lower bound.

$$h = \frac{gT^2}{2} = \frac{9.85 \times 2.545^2}{2} = 31.8993 = 31.89 \,\mathrm{m} \,\mathrm{(to} \, 4 \,\mathrm{s.f.})$$

The upper bound (31.74) and the lower bound (31.89) are the same when the numbers are given to 2 significant figures.

$$h = 32 \,\mathrm{m}$$
 (to 2 s.f.)

18 a Let $f(x) = x^3 - 4x + 2$

$$f(1) = 1^3 - 4(1) + 2 = -1$$

 $f(0) = 0^3 - 4(0) + 2 = 2$

As there is a sign change, the root lies between 0 and 1.

b
$$x^3 - 4x + 2 = 0$$

 $4x = x^3 + 2$

$$x = \frac{x^3 + 2}{4}$$
$$x = \frac{x^3}{4} + \frac{1}{2}$$
0.53125

c $x_1 = 0.53125$ $x_2 = 0.53748$

$$x_3 = 0.53881$$

$$x_4 = 0.53911 \approx 1.539$$
 (to 3 d.p.)

19 a 9 parts = 36 so 1 part = 4

number of red counters = $4 \times 4 = 16$

b i P(1st counter is red) = $\frac{16}{36} = \frac{4}{9}$ P(2nd counter is red) = $\frac{15}{35} = \frac{3}{7}$ P(both counters are red) = $\frac{4}{9} \times \frac{3}{7} = \frac{12}{63} = \frac{4}{21}$ ii P(different colours) = P(red then blue) + P(blue then red) = $\left(\frac{4}{9} \times \frac{3}{7}\right) + \left(\frac{5}{9} \times \frac{19}{35}\right)$

$$=\frac{31}{63}$$