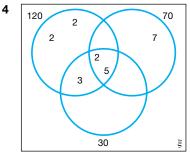
Edexcel Foundation Mathematics Revision Guide


Full worked solutions

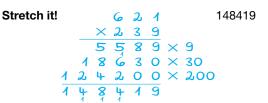
Number

Factors, multiples and primes

- **1 a** 5 **b** 1, 12 **c** 1, 5, 45 **2** 70 = 2 × 5 × 7
- $150 = 2 \times 3 \times 5 \times 5$
- HCF = 10, LCM = 1050

a 2 × 5 = 10
b 2 × 2 × 2 × 3 × 5 × 7 = 840
5 12 and 18

Ordering integers and decimals


1	а	false	с	true	е	true
	b	true	d	true		
2	-0	0.3, -1.5,	-2.5,	-4.2, -	7.2	
3	0.0	049, 0.124	, 0.41	2, 0.442	, 1.002	
4	а	<	b	<	с	>

Calculating with negative numbers

Stretch it! Multiplying three negative numbers together always gives a negative answer.

1	a -8 - 3 = -11	d	14 + 4 = 18
	b 99	е	0
	c -6	f	12 + 15 - 2 = 25
2	-8 and 9		
3	32°C		

Multiplication and division

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 a $\underbrace{0 + 7}{5 2^{-2} 3^{-3} 5} 47$ b $\underbrace{0 5 1 6}{8 + 1^{4} 2^{4} 8} 516$
$ \begin{array}{c} c & 0 & 1 & 2 & 6 \\ 17 & 2 & 1 & 4 & 6 \\ & 1 & 7 \\ & 4 & 4 \\ & 3 & 4 \\ & 3 & 4 \\ & 1 & 0 & 6 \\ & 1 & 0 & 2 \\ & 4 \\ 126 \text{ remainder 4, or } 126 \frac{4}{17} \end{array} $
3 0 3 3 remainder 1 a 33 boxes b 1 pencil
$\begin{array}{c} 4 \underbrace{0 9 1.2 5}_{4} \\ 4 3^{3} 6 5^{4} \\ 0^{2} \\ 0 \end{array} \pounds 91.25 \end{array}$
$5 \begin{array}{c} 3 2 \\ \times 9 \\ \hline 2 \\ 8 \\ \end{array} \begin{array}{c} 1 \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} $
$\begin{array}{c} 6 \frac{3 0 7.6 6}{3 9 2^{2} 3.0^{2} 0} 307.\dot{6} = 307\frac{2}{3} \\ \end{array}$
7 8 2 3 $\times 3 5$ $+ 1 1 5 \times 5$ 2 4 6 9 0 $\times 30$ 2 8 8 0 5 28 805

6

9 He has not placed a zero in the ones column before multiplying through by 5. The × 50 line should have 5 digits: 36300, so his final three rows of working should look like this:

 $\begin{array}{r}
1 + 5 2 \times 2 \\
\underline{3 6 3 0 0} \\
3 7 7 5 2
\end{array}$

Calculating with decimals

Stretch it!
$$3.2 + 7.5 \times 2 = 3.2 + 15 = 18.2$$

1	а	3 1	с	5 × 7 = 35
•	b	$ \begin{array}{r} 3. \# 0 \\ -\underline{1.07} \\ \underline{2.33} \\ 19.3 \\ + 5.0 \\ 9 \end{array} $	33 O	0.05 × 0.7 = 0.035
		1 24.391		
	d	1	e × 9 × 10	<u>1.5 6 3</u> 5)7 ² .8 ³ 1 ⁴ 5 1.563
2	1	6 4 × 2 4 2 5 6 2 8 0 5 3 6	$24 \times 64 = 153$ $24 \times \pounds 0.64 = 153$ $\pounds 20 - \pounds 15.36 = 153$	215.36
3		2746	Erica 2 \times 27.46	6 = £54.92

 $\frac{2}{8} \frac{7.4}{2} \frac{6}{2}$ Erica 2 × 27.46 = £54.92 Freya 82.38 - 54.92 = £27.46

Rounding and estimation

Stretch it! a 1.0 **b** 1.00 **c** 1.000 All the answers are 1

Stretch it! $6.5 \times 8.5 = 55.25 \,\text{m}^2$ – an overestimate.

1	а	0.35	С	32.6
	b	10	d	33100
2	а	150 ≤ <i>x</i> < 250	с	$3.15 \le x < 3.25$
	b	$5.5 \le x < 6.5$	d	$5.055 \le x < 5.065$
3	0.5	$\frac{30}{80} = 10$		

- 4 b is false since $18 \times 1 = 18$ so 18×0.9 cannot be 1.62 c is false because if you divide by a number smaller than 1, the answer will be larger.
- 5 Night-time low tariff: 2.32 units \times 1.622p = 3.76p 7.151 units \times 2.315p = 16.55p 20.31p One tariff: 2.320 + 7.151 = 9.471 units 9.471 units \times 1.923p = 18.21p

Tarik should choose One tariff, since it is cheaper.

Converting between fractions, decimals and percentages

Stretch it! 0.1, 0.2, 0.3, ... 0.4, 0.5. The number of ninths is the same as the digit that recurs. The exception is $\frac{9}{9}$ which is the same as 1.

1 a $\frac{32}{100} = \frac{8}{25}$ **b** $1\frac{24}{100} = 1\frac{6}{25}$ **c** $\frac{33}{100}$ **d** $\frac{95}{100} = \frac{19}{20}$ 2 a 0.41666... 0.416 $(2)5^{5}0^{2}0^{8}0^{8}0^{8}0$ b 0.375 0.375 8)3.30°0°00 **c** 0.49 **d** 0.185 e 0.42857142. 7)3.³0²0⁶0⁴0⁵0¹0³0²0 0.428571 **3 a** $\frac{91}{100} = 91\%$ **b** $\frac{3}{10} = \frac{30}{100} = 30\%$ **c** $\frac{4}{5} = \frac{80}{100} = 80\%$ **d** $\frac{9}{15} = \frac{3}{5} = \frac{6}{10} = \frac{60}{100} = 60\%$ **4** $\frac{3}{8} \frac{0.375}{83.000} = 0.375 = 37.5\%$ **5** 0.35 $\frac{2}{5} = \frac{4}{10} = 0.4$ 30% = 0.3 $30\%, 0.35, \frac{2}{5}$ 6 $\frac{15}{20} = \frac{75}{100} = 75\%$ – Amy

Rudi's mark was higher.

Ordering fractions, decimals and percentages

- **1** $\frac{1}{3} = \frac{8}{24}$ $\frac{3}{8} = \frac{9}{24}$ $\frac{7}{12} = \frac{14}{24}$ $\frac{7}{12}, \frac{3}{8}, \frac{1}{3}$
- **2** -2.2, 7, $\frac{1}{5} = 0.2$, $-\frac{1}{10} = -0.1$, 15% = 0.15, 1% = 0.01, 0.1 In order, this is: -2.2, $-\frac{1}{10}$, 1%, 0.1, 15%, $\frac{1}{5}$, 7. The middle value is 0.1
- **3** Yes. If the numerator of a fraction is half the denominator then the fraction is equivalent to $\frac{1}{2}$. If the numerator is smaller than this the fraction must be less than $\frac{1}{2}$.

Calculating with fractions

Stretch it! No - you could add the whole number parts, and then add the fraction parts.

1 **a**
$$2\frac{3}{8} - \frac{3}{4} = \frac{19}{8} - \frac{3}{4} = \frac{19}{8} - \frac{6}{8} = \frac{13}{8} = 1\frac{5}{8}$$

b $\frac{\sqrt{8}}{17} \times \frac{2}{8} = \frac{6}{17}$
c $\frac{1}{7} \times 3\frac{1}{3} = \frac{1}{7} \times \frac{10}{3} = \frac{10}{21}$
d $2\frac{2}{5} + 5\frac{3}{4} = 7 + \frac{2}{5} + \frac{3}{4} = 7 + \frac{8}{20} + \frac{15}{20}$
 $= 7\frac{23}{20}$
 $= 8\frac{3}{20}$
e $\frac{1}{5} \div 2\frac{1}{2} = \frac{1}{5} \div \frac{5}{2} = \frac{1}{5} \times \frac{2}{5} = \frac{2}{25}$
2 **a** $30 \div 5 = 6$
 $6 \times 2 = 12$
b $40 \div 8 = 5$
 $5 \times 7 = \text{\pounds}35$
c $1818 \div 9 = 202$
 $202 \times 4 = 808 \text{ mm}$
3 $35 \div 7 = 5$
 $3 \times 7 = 15$
 $35 - 15 = 20$
4 The number must be a multiple of 5, and $\frac{2}{5}$ of a multiple of 2.
 $\frac{2}{5}$ of $45 = 18$

- $\frac{2}{5}$ of 40 = 16
- $\frac{2}{5}$ of 35 = 14
- $\frac{2}{5}$ of 30 = 12

 $\frac{2}{5}$ of the number must be greater than 12, so the number is 35

Percentages

1 a $18 \div 100 = 0.18 \text{ cm}$ $0.18 \times 10 = 1.8 \text{ cm}$ b $1.20 \div 100 = \text{\pounds}0.012$

> $0.012 \times 25 = \text{\pounds}0.30$ c 200 ml ÷ 100 = 2 ml

 $2 \text{ ml} \times 2 = 4 \text{ ml}$

2 a 1.1 × 30 = 33

- **b** $1.08 \times 500 = 540$
- **c** 1.12 × 91 = 101.92, so £101.92
- **3 a** $0.8 \times 600 = 480$
 - **b** 0.95 × 140 = 133
 - **c** $0.81 \times 18 = 14.58$, so £14.58
- **4** 1.09 × 2800 = 3052
- **5** $0.65 \times 22\ 000 = \pounds14\ 300$

Order of operations

1 a 7

b $0.9 + 3.2 - \sqrt{36}$ = 0.9 + 3.2 - 6= -1.9

- **c** $(-1)^2 14$ = 1 - 14 = -13 **2** 30
- **3** $(8 3 + 5) \times 4$

Exact solutions

- **1** a π **b** 36π **c** $2\frac{1}{2}\pi \operatorname{or} \frac{5}{2}\pi$
- **2** a 7π b $\frac{5}{8}\pi$
- 3 Area $= \frac{2}{7} \times \frac{3}{4} = \frac{6}{28} = \frac{3}{14} \text{ cm}^2$ Perimeter $= \left(2 \times \frac{3}{4}\right) + \left(2 \times \frac{2}{7}\right) = \frac{3}{2} + \frac{4}{7} = \frac{21+8}{14} = \frac{29}{14}$ $= 2\frac{1}{14} \text{ cm}$
- **4 a** $2 \times 9 \times \pi = 18\pi$ cm **b** $12^2 \times \pi = 144\pi$ cm²
- 5 Circumference = $2 \times \pi \times 1 = 2\pi$ cm Length of one side of square = $2\pi \div 4 = \frac{1}{2}\pi$ cm

Indices and roots

it must be

a $\frac{1}{3}$ **b** $\frac{1}{0.4} = \frac{10}{4} = 2\frac{1}{2}$ **c** $\frac{1}{0.9} = \frac{10}{9} = 1\frac{1}{9}$ $3^2 = 9$, $1^3 = 1$, $\sqrt[3]{27} = 3$, $\sqrt[3]{8} = 2$ In order, this gives 1^3 , $\sqrt[3]{8}$, $\sqrt[3]{27}$, 3^2 **a** -8 **b** 1 **c** 81 **d** 1**a** $\frac{1}{4}$ **b*** $\frac{1}{7^2} = \frac{1}{49}$ **c*** $\frac{1}{1^4} = 1$ **d** $\frac{1}{3}$ $\frac{5^9}{5^5} = 5^4$

Standard form

- **1 a** 45 000 000 **b** 0.091
- **2 a** 6.45×10^8 **b** 7.9×10^{-8}
- **3** 350000 4200 = 345800
- $\begin{array}{lll} \textbf{4} & 3.2 \times 10^2 = 320 & 3.1 \times 10^{-2} = 0.031 \\ 3.09 \times 10 = 30.9 & 3 + (2.1 \times 10^2) = 213 \\ \text{In order, this gives: } 3.1 \times 10^{-2} & 3.09 \times 10 \\ 3 + (2.1 \times 10^2) & 3.2 \times 10^2 \end{array}$
- $5 \ 3\times 10^8\,\text{m/s}$
- **6** $200 \times 1.1 \times 10^{-4} = 2.2 \times 10^{-2} = 0.022 \text{ m} = 2.2 \text{ cm}$

Listing strategies

Stretch it!

red + small, red + medium, red + large,

green + small, green + medium, green + large,

- blue + small, blue + medium, blue + large.
- **1** 111, 112, 121, 211, 113, 131, 311,

222 221, 212, 122, 223, 232, 322 333 331 313 133 332 323 233 123 132 213 231 312 321

*These answers are labelled in the wrong order in the first edition of our Revision Guide.

- 2
 444
 446
 449

 464
 466
 469

 494
 496
 499
- 3 Small A, Small B, Small C, Small D Medium A, Medium B, Medium C, Medium D Large A, Large B, Large C, Large D.

Review it!

1 7 and 6 (or 11 and 2, where both are prime and 2 is also a factor of 12) $2 \quad 630 = 2 \times 3 \times 3 \times 5 \times 7 = 2 \times 3^2 \times 5 \times 7^*$ **3** $18 = 2 \times 3 \times 3$ $36 = 2 \times 2 \times 3 \times 3$ $40 = 2 \times 2 \times 2 \times 5$ HCF = 24 -11.5, -8.3, -3.5, -3.2, 1.4 5 a 32.99+18.74£51.73 51.73 1 1 b 18.33 £18.33 3)54 99 6 a 2 3 ×14 92×4 $23 \times 0.14 = 3.22$ 230×10 322

- **b** 1 + 9 $\times 2 7$ $1 0 + 3 \times 7$ $2 9 8 0 \times 20$ $+ 0^{1} 2 3$ 4023
- **7** 81 ÷ 3 = 27
- 8 031 $11)3^{3}4^{4}5^{+}$ remainder 4 $31\frac{4}{11}$
- 9 a 0.3758)3.0600 0.375

b
$$0.7 \times 100 = 70\%$$

10 a 70% =
$$\frac{70}{100} = \frac{7}{10}$$

b 0.8 = $\frac{8}{10} = \frac{4}{5}$
11 $\frac{1}{2} = \frac{2}{4}$ $\frac{1}{2}$ is larger
 $\frac{2}{7} = \frac{8}{28}$ $\frac{1}{4} = \frac{7}{28}$ $\frac{2}{7}$ is larger
 $\frac{3}{11} = \frac{12}{44}$ $\frac{1}{4} = \frac{11}{44}$ $\frac{3}{11}$ is larger
 $\frac{2}{5} = \frac{8}{20}$ $\frac{1}{4} = \frac{5}{20}$ $\frac{2}{5}$ is larger

They all are

12 a
$$\frac{3}{5} + \frac{1}{7} = \frac{21}{35} + \frac{5}{35} = \frac{26}{35}$$

b $2\frac{1}{5} - \frac{7}{10} = \frac{11}{5} - \frac{7}{10} = \frac{22}{10} - \frac{7}{10} = \frac{15}{10} = 1\frac{1}{2}$
c $\frac{2}{3} \div \frac{4}{9} = \frac{8}{34} \times \frac{8}{32} = \frac{3}{2} = 1\frac{1}{2}$
13 $0.25 - 0.07 = 0.18 = \frac{18}{100} = \frac{108}{600}$
 $\frac{2}{3} - \frac{1}{2} = \frac{4}{6} - \frac{3}{6} = \frac{1}{6} = \frac{100}{600}$
 $0.25 - 0.07$ is larger
14 $\frac{3}{5} \times \frac{5}{4} = \frac{3}{4}$
15 $\frac{45}{1000} = \frac{9}{200}$
16 $8.6 \div 100 = 0.086$
 $0.086 \times 25 = \pounds 2.15$
17 a 9 b 5
18 a 3.4×10^9 b 3.04×10^{-7}
19 $37.55 \le x < 37.65$
20 a 51 b $12, 15, 21, 51, 25, 52$
21 a $200 \times 9 \times 10 = 18000 = \pounds 180.00$
b Underestimate since all numbers were rounded down.
22 40% of $600 = 240$
 $\frac{1}{5}$ of $600 = 120$
 $600 - (240 + 120) = 240$
23 More than 33%, less than 50%, multiple of 5. 35%
24 No, since 2 is a prime number and odd + odd + even = even
even
25 $0.8 \times 349 = \pounds 279.20$
26 a 3.1 b 3.05
27 a $325\ 000$ b $320\ 000$
28 $3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$
29 a $26.25 + 18.23 + (4 \times 5.5) = \pounds 66.48$
 $\pounds 66.48 \div 4 = \pounds 16.62$
30 $0.19 \times 18\ 000 = 3420$
31 a $2010\ and\ 2011$

Algebra

b 1.1 × 102.3 = 112.53

Understanding expressions, equations, formulae and identities

- **a** 3a + 6 = 10 (It can be solved to find the value of a.) **b** C = πD (The value of C can be worked out if the value of D is known.)
 - **c** 3(a + 2) (It does not have an equals sign.)
 - **d** 3ab + 2ab = 5ab (Collecting the like terms on the left-hand side gives 5ab which is equal to the right-hand side.)
- 2 James is correct.

4x - 2 = 2x can be solved to find the value of x so it is an equation.

Or, the two sides of 4x - 2 = 2x are not equal for all values of *x* so it cannot be an identity. For example, when x = 2: (Left-hand side) $4x - 2 = 4 \times 2 - 2 = 6$

(Right-hand side) $2x = 2 \times 2 = 4$

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

Simplifying expressions

Stretch it!

The expressions must all contain algebra, so each part must include *t*.

There are four possible combinations that make $12t^3$: $12t \times t \times t$, $2t \times 6t \times t$, $2t \times 3t \times 2t$, $3t \times 4t \times t$.

1 a
$$p^3$$

b $4 \times b \times c \times 7 = 4 \times 7 \times b \times c = 28bc$

- **c** $4a \times 3b = 4 \times 3 \times a \times b = 12ab$ **d** $5x \times 4x = 5 \times 4 \times x \times x = 20x^2$
- $\mathbf{u} \quad \mathbf{5}_{\mathcal{X}} \wedge \mathbf{4}_{\mathcal{X}} = \mathbf{5} \wedge \mathbf{4} \wedge \mathbf{x} \wedge \mathbf{x} = \mathbf{2} \mathbf{5}_{\mathcal{X}}$
- **e** $2g \times (-4g) = 2 \times (-4) \times g \times g = -8g^2$
- **f** $2p \times 3q \times r = 2 \times 3 \times p \times q \times r = 6pqr$

2 a
$$10x \div 2 = \frac{10x}{2} = 5x$$

b $\frac{14w}{2} = 7x$

- **b** $\frac{14W}{-2} = -7W$
- **c** $6p \div p = \frac{6p}{p} = 6$
- **d** $8mn \div 2m = \frac{8mn}{2m} = 4n$

e
$$\frac{12xy}{3y} = 4x$$

f $9abc \div bc = \frac{9abc}{bc} = 9a$

Collecting like terms

1 a 5*f*

- **b** 7*b*
- **c** 5mn
- **d** 3d + 4e + d 6e = 3d + d + 4e 6e = 4d 2e
- **e** 2x + 5y + 3x 2y 2 = 2x + 3x + 5y 2y 2
- = 5x + 3y 2
- f 2a b 5a 3 = 2a 5a b 3 = -3a b 3g $2x^2$
- **h** $2t^3 + 4 t^3 4 = 2t^3 t^3 + 4 4 = t^3$
- i $7\sqrt{x}$
- j $3\sqrt{x}$
- **k** $7\sqrt{x}$

Using indices

1 a $x^5 \times x^4 = x^{5+4} = x^9$

- **b** $p \times p^4 = p^{1+4} = p^5$
- **c** $2m^4 \times 3m^4 = 2 \times 3 \times m^4 \times m^4 = 6 \times m^{4+4} = 6m^8$
- $d \quad 3m^4n \times 5m^2n^3 \\ = 3 \times 5 \times m^4 \times m^2 \times n \times n^3$
 - $= 15 \times m^{4+2} \times n^{1+3} = 15m^6 n^4$
- **e** $u^{-2} \times u^5 = u^{-2+5} = u^3$
- **f** $t^7 \times t^{-6} = t^{7+(-6)} = t$

2 a $x^4 \div x^2 = x^{4-2} = x^2$

- **b** $\frac{y}{v^3} = y^{7-3} = y^4$
- **c** $\frac{p^9}{p^8} = p^{9-8} = p$

d
$$8x^6 \div 4x^3 = \frac{8x^6}{4x^3}$$

 $(8 \div 4) \times (x^6 \div x^3) = 2 \times x^{6-3} = 2x^3$

e
$$m^3 \div m^5 = m^{3-5} = m^{-2} = \frac{1}{m^2}$$

f $\frac{5x^8}{15x^4} = \frac{5}{15} \times \frac{x^8}{x^4} = \frac{1}{3} \times x^{8-4} = \frac{x^4}{3}$

g
$$3x^2 \div 9x = \frac{3x^2}{9x} = \frac{3}{9} \times \frac{x^2}{x} = \frac{1}{3} \times x^{2-1} = \frac{x}{3}$$

3 a $(x^2)^3 = x^{2 \times 3} = x^6$

b $(y^4)^4 = y^{4 \times 4} = y^{16}$

- **c** $(p^5)^2 = p^{5 \times 2} = p^{10}$
- **d** $(4m^5)^2 = 4^2 \times (m^5)^2 \times 16 \times m^{5 \times 2} = 16m^{10}$
- **e** $(x^2)^{-3} = x^{2 \times (-3)} = x^{-6} = \frac{1}{x^6}$
- **f** $(n^{-4})^{-2} = n^{-4 \times (-2)} = n^8$
- **4 a** $2x \times 3x^2 = 2 \times 3 \times x \times x^2 = 6 \times x^{1+2} = 6x^3$
 - **b** $\frac{x^8}{x} = x^{8-1} = x^7$

c
$$\frac{2x^3}{8x^2} = \frac{2}{8} \times \frac{x^3}{x^2} = \frac{1}{4} \times x^{3-2} = \frac{x}{4}$$

- **d** $(3y^3)^3 = 3^3 \times (y^3)^3 = 27 \times y^{3 \times 3} = 27y^9$
- **e** $v^{-4} = \frac{1}{4}$

f
$$a^2b \times a^3b^2$$

 $= a^2 \times a^3 \times b \times b^2 = a^{2+3} \times b^{1+2} = a^5 b^3$

Expanding brackets

Stretch it!

- 1 $(x+2)(x+4) = x^2 + 6x + 8$
- **2 a** $2x^2 + 8x + 6$ **b** $3x^2 + 10x 8$
- **c** $6x^2 + 7x 3$
- **1 a** 3a + 6 **b** 4b 16 **c** 10c + 25 **d** 6 - 2e **e** 4x + 4y + 8 **f** -2y - 4**g** $x^2 - 2x$ **h** $2a^2 + 10a$
- **2** a 2(2x + 3) + 4(x + 5) = 4x + 6 + 4x + 20 = 8x + 26b 3(3y + 1) + 2(4y - 3) = 9y + 3 + 8y - 6 = 17y - 3c 4(2m + 4) - 3(2m - 5) = 8m + 16 - 6m + 15 = 2m + 31
- **3 a** $(x + 2)(x + 3) = x^2 + 3x + 2x + 6 = x^2 + 5x + 6$
 - **b** $(y-3)(y+4) = y^2 + 4y 3y 12 = y^2 + y 12$
 - **c** $(a + 3)(a 7) = a^2 7a + 3a 21 = a^2 4a 21$
 - **d** $(m-1)(m-6) = m^2 6m m + 6 = m^2 7m + 6$
- 4 a $(x + 1)^2 = (x + 1)(x + 1)$ = $x^2 + x + x + 1 = x^2 + 2x + 1$
 - **b** $(x 1)^2 = (x 1)(x 1)$ = $x^2 - x - x + 1 = x^2 - 2x + 1$
 - **c** $(m-2)^2 = (m-2)(m-2)$ = $m^2 - 2m - 2m + 4 = m^2 - 4m + 4$
 - **d** $(y + 3)^2 = (y + 3)(y + 3)$ = $y^2 + 3y + 3y + 9 = y^2 + 6y + 9$

Factorising

Stretch it!

The width of the rectangle = x + 1, since $x^2 + 3x + 2 = (x + 2)(x + 1)$

1 a 3(a + 3)**b** 5(*b* - 2) **d** d(d-2)**c** 7(1+2c)**b** 4(b-3)**2** a 4(2a + 5)**c** 9(2 + c)**d** d(2d-3)**3** a 2(2x - 3y)**b** m(a + b)**d** n(2 - 9n)**c** x(4x + 3y)**e** 5x(1 + 2y)**f** 4p(q-3)4 a (x + 1)(x + 7)**b** (x-1)(x+5)**c** (x + 2)(x - 4)**d** (x-2)(x-3)**e** (x-3)(x-3)**f** (x + 3)(x + 4)**g** (x-2)(x+5)**h** (x + 4)(x - 5) **5** a $x^2 - 16 = x^2 - 4^2 = (x + 4)(x - 4)$ **b** $x^2 - 36 = x^2 - 6^2 = (x + 6)(x - 6)$ **c** $x^2 - 81 = x^2 - 9^2 = (x + 9)(x - 9)$ **d** $y^2 - 100 = y^2 - 10^2 = (y + 10)(y - 10)$ Substituting into expressions **1** $c = 5 \times 3 + 2 \times (-2) = 15 + (-4) = 11$ **2** a $2-2 \times (-4) = 2 - (-8) = 10$ **b** $3 \times 2 \times (-4) = -24$ **c** $4 \times (-4) - 3 \times 2 = -16 - 6 = -22$ **d** $2^2 + (-4)^2 = 4 + 16 = 20$ **e** $2 \times 2 + 4(2 - (-4)) = 2 \times 2 + 4 \times 6 = 4 + 24 = 28$ **f** $\frac{1}{2}(2 + (-4)) = \frac{1}{2} \times -2 = -1$ 3 False. When a = 3: $3a^2 = 3 \times 3^2 = 3 \times 9 = 27$ **4 a** $10 \times \frac{1}{2} \times 4 = 20$ **b** $8 \times \left(\frac{1}{2}\right)^2 = 8 \times \left(\frac{1}{4}\right) = 2$ $\textbf{c} \quad 0.5 \times 4 \times 10 \times 10 \times 10 \times 10 \times 10 = 200\ 000$ $(= 2 \times 10^{5})$ **d** $(4 \times 3) \div (10 \times 10 \times 10) = 12 \div 1000 = 0.012$ e $2 \times 4 \times (10 \times 10 \times 10 \times 10 \times 10) \times 3 \div (10 \times 10)$ × 10) $2 \times 4 \times 100\ 000 \times 3 \div 1000$ = 2 400 000 ÷ 1000 = 2400**f** $4^2 - 12 \times \frac{1}{2} = 16 - 12 \times \frac{1}{2} = 16 - 6 = 10$

Writing expressions

1	a 4-q	b $n + m$ (or $m + n$)
	c 8 <i>t</i>	d <i>xy</i> (or <i>yx</i>)
	e p ²	f <i>a</i> ³
2	x + y	
3	100 <i>n</i> + 75 <i>b</i>	

4 Perimeter = 3a + 2a + 4 + 4a - 2 = 9a + 25 Area = $\frac{1}{2} \times 4 \times (2a + 5) = 2 \times (2a + 5) = 4a + 10$

Solving linear equations

1 a 5a = 35 $a = \frac{35}{5}$ a = 7 **b** b - 9 = 8 b = 8 + 9 b = 17 **c** $\frac{c}{4} = 4$ $c = 4 \times 4$ c = 16 **d** d + 4 = 2 d = 2 - 4 d = -2 **2 a** 2x + 3 = 13 2x = 10x = 5

b 3y - 4 = 113v = 15v = 5**c** 2p + 9 = 12p = -8p = -4**d** $\frac{f}{3} - 7 = 4$ $\frac{f}{3} = 11$ f = 33**e** $\frac{x+5}{2} = 8$ x + 5 = 16 $\begin{array}{l}
 x = 11 \\
 f \quad \frac{f-7}{3} = 4 \\
 f-7 = 12
 \end{array}$ f = 19**3** a 9 - m = 7 9 = 7 + m2 = *m* **b** 10 - 3x = 110 = 1 + 3x9 = 3x3 = x**c** 7 - 2x = 27 = 2 + 2x5 = 2x $\frac{5}{2} = x$ $(\text{Or } x = 2.5, \text{ or } x = 2\frac{1}{2})$ **d** 5 = 1 - 2f5 + 2f = 12f = -4f = -24 Hannah has not subtracted 4 from both sides. Correct working: 2x + 4 = 82x = 4*x* = 2 **5 a** 3(a + 2) = 153a + 6 = 153a = 9a = 3**b** 4(b-2) = 44b - 8 = 44*b* = 12 b = 3**c** 3(4c - 9) = 912c - 27 = 912c = 36c = 3**d** 2(d+3) + 4 = 22d + 6 + 4 = 22d + 10 = 22d = -8d = -4

e 4(2x + 3) - 2 = 68x + 12 - 2 = 68x + 10 = 68x = -4 $x = -\frac{4}{8} = -\frac{1}{2}$ (Or x = -0.5)**6 a** 3m = m + 62m = 6m = 3**b** 5t - 6 = 2t + 33t - 6 = 33t = 9t = 3**c** 4x + 3 = 2x + 82x + 3 = 82x = 5 $x = \frac{5}{2}$ $(\text{Or } x = 2.5 \text{ or } x = 2\frac{1}{2})$ **d** 3 - 2p = 6 - 3p3 + p = 6p = 3**e** 3y - 8 = 5y + 4-8 = 2y + 4-12 = 2y-6 = y7 a 2(x+5) = x+62x + 10 = x + 6x + 10 = 6x = -4**b** 7b - 2 = 2(b + 4)7b - 2 = 2b + 85b - 2 = 85b = 10*b* = 2 **c** 4(2y + 1) = 3(5y - 1)8y + 4 = 15y - 34 = 7y - 37 = 7y**1** = *y* **d** 2x - 1 = 8 - 4x6x - 1 = 86x = 9 $x = \frac{9}{6} = \frac{3}{2}$ $(\text{Or } x = 1.5 \text{ or } x = 1\frac{1}{2})$

Writing linear equations

1 a Perimeter =
$$4 \times (2s + 3) = 8s + 12$$

(Or, Perimeter = $2s + 3 + 2s + 3 + 2s + 3$
 $+ 2s + 3 = 8s + 12$)
b $8s + 12 = 84$
 $8s = 72$
 $s = 9 \text{ cm}$

2 a Angles in a quadrilateral add up to 360° so: x + 20 + 2x - 15 + x + 65 + 2x - 10 = 3606x + 60 = 3606x = 300*x* = 50 **b** Largest angle: $x + 65 = 50 + 65 = 115^{\circ}$ (Other angles: $x + 20 = 50 + 20 = 70^{\circ}$; $2x - 15 = 2 \times 50 - 15 = 85^{\circ};$ $2x - 10 = 2 \times 50 - 10 = 90^{\circ}$ **3** Let a = Karen's age Monica is 4 years younger: a - 4a + a - 4 = 642a - 4 = 642*a* = 68 a = 34Karen is 34 years old. a - 4 = 34 - 4 = 30Monica is 30 years old. **4** Let n = number. 2n + 4 = 16 - n3n + 4 = 163*n* = 12 n = 4The number is 4. **5** Let l =length of rectangle. Width is 2 cm smaller: l - 2Perimeter = 2l + 2(l - 2)= 2l + 2l - 4 = 4l - 44l - 4 = 364l = 40l = 10Length is 10 cm. l - 2 = 10 - 2 = 8Width is 8 cm. 6 Base angles of an isosceles triangle are equal so: 4a - 20 = 2a + 162a - 20 = 162*a* = 36 *a* = 18 When $a = 18: 4a - 20 = 4 \times 18 - 20 = 52$ So 2a + 16 = 52Angles in a triangle add up to 180° so: 4b - 2a + 52 + 52 = 1804b - 2a + 104 = 1804b - 2a = 76 (Substitute a = 18) $4b - 2 \times 18 = 76$ 4b - 36 = 764*b* = 112 *b* = 28

Linear inequalities

1 a x = 3, 4, 5 **b** x = 2, 3, 4, 5 **c** x = 0, 1, 2, 3**d** x = -3, -2, -1, 0, 1

2 **a**
$$x < 3$$
 b $x \ge -2$
c $-1 \le x \le 5$
3 **a** $\underbrace{-3 - 2 - 1}_{-3 - 2 - 1}$ **b** $1 2$ **c** 3 **d**
b $\underbrace{-3 - 2 - 1}_{-3 - 2 - 1}$ **d** $1 2$ **c** 3 **d**
c $\underbrace{-3 - 2 - 1}_{-3 - 2 - 1}$ **d** $1 2$ **c** 3 **d**
d $\underbrace{-3 - 2 - 1}_{-3 - 2 - 1}$ **d** $1 2$ **c** 3 **d**
d $\underbrace{-3 - 2 - 1}_{-3 - 2 - 1}$ **d** $1 2$ **c** 3 **d**
d $\underbrace{-3 - 2 - 1}_{-1 - 0}$ **d** $1 2$ **c** 3 **d**
d $\underbrace{-3 - 2 - 1}_{-1 - 0}$ **d** $1 2$ **c** 3 **d**
d 4 **a** $2x - 2 > 4$
 $2x > 6$
 $x > 3$
 $\underbrace{-1 - 0 - 1 - 2}_{-1 - 0 - 1 - 2 - 3 - 4}_{-1 - 5}_{-1 - 1 - 0 - 1 - 2 - 3 - 4}_{-1 - 5}_{-1 - 1 - 0 - 1 - 2 - 3 - 4}_{-1 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-1 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-1 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 2}_{-3 - 2 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2 - 2 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 2 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3 - 2}_{-3 - 2 - 1 - 0 - 1 - 2 - 3 - 4}_{-3 - 3 - 2}_{-3 - 2 - 3 - 2}_{-3 - 2 - 2 - 2}_{-3 - 2 - 3 - 2}_{-3 - 2$

5 Olivia has not multiplied all the terms in the bracket by the term outside.

Correct working: 3(x + 4) > 22 3x + 12 > 22 3x > 10 $x > \frac{10}{3}$ (Or $x > 3\frac{1}{3}$) 6 a 2x + 3 < 4x + 8

$$3 < 2x + 8$$

 $-5 < 2x$
 $-\frac{5}{2} < x$
(Or $x > -\frac{5}{2}$)

- **b** Smallest integer value of x that satisfies the inequality is -2
- 7 No, Lee is not correct.
 - $6 \le 2x + 4 < 16$

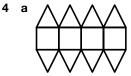
$$-2 \le 2x < 12$$

$$-1 \le x < 6$$

Inequality is not true when x = 6 so x = 6 is not a possible solution.

Alternative method: When x = 6: $6 \le 2 \times 6 + 4 < 16$ $6 \le 16 < 16$ Since 16 is not less than 16, x = 6 is not a possible solution. **8 a** $4 - x \le 1$ $4 \le x + 1$ $3 \le x$ (Or $x \ge 3$) Alternative method: $4 - x \le 1$ $-x \leq -3$ $x \ge 3$ **b** 6 - 3x > 96 > 3x + 9-3 > 3x-1 > x (Or x < -1) Alternative method: 6 - 3x > 9-3x > 3*x* < - 1 **c** $8 - 2x \ge 7$ $8 \ge 2x + 7$ $1 \ge 2x$ $\frac{1}{2} \ge x$ (Or $x \le \frac{1}{2}$) Alternative method: $8 - 2x \ge 7$ $-2x \ge -1$ $x \leq \frac{1}{2}$ **d** $-2 < -x \le 3$ $2 > x \ge -3$

Formulae


1 Pay = $8 \times 35 + 25 = 280 + 25 = 305$ Pay = £305**2** $P = 2(8 + 5.5) = 2 \times 13.5 = 27$ **3** $v = 10 + (-20) \times 5 = 10 + (-100) = -90$ 4 C = 25d + 50**5** $A = l^2$ **6** a P = 2a + 2(a + 3) = 2a + 2a + 6 = 4a + 6(Or P = a + a + a + 3 + a + 3 = 4a + 6) **b** $P = 4 \times 6 + 6 = 24 + 6 = 30$ $P = 30 \,\mathrm{cm}$ **7** $-10 = \frac{D}{6.5}$ -65 = D**8 a** v = u + atv - u = at $\frac{v-u}{t} = a$ **b** $V = \frac{1}{3}Ah$ 3V = Ah $\frac{3V}{A} = h$

c
$$y = 3(x - 3)$$

 $y = 3x - 9$
 $y + 9 = 3x$
 $\frac{y + 9}{3} = x$
Or: $x = \frac{y}{3} + 3$
d $v^2 = u^2 + 2as$
 $v^2 - u^2 = 2as$
 $\frac{v^2 - u^2}{2a} = s$
e $T = \sqrt{\frac{2s}{g}}$
 $T^2 = \frac{2s}{g}$
 $gT^2 = 2s$
 $g = \frac{2s}{T^2}$

Linear sequences

1 a i 2, 5, 8, 11, **14, 17** ii 23, 19, 15, 11, **7, 3**

- iii 3, 9, 15, 21, 27, 33
 iv 4, 9, 14, 19, 24, 29
- **b** i 2, 5, 8, 11, 14, 17, 20, 23, 26, **29**
 - (Or, 10th term = $2 + (3 \times 9) = 29$)
 - ii 23, 19, 15, 11, 7, 3, -1, -5, -9, -13(Or, 10th term = 23 - (4 × 9) = -13)
 - iii 3, 9, 15, 21, 27, 33, 39, 45, 51, 57
 (Or, 10th term = 3 + (6 × 9) = 57)
 - iv 4, 9, 14, 19, 24, 29, 34, 39, 44, **49** (Or, 10th term = 4 + (5 × 9) = 49)
- **2** a 1st term = $1 \times 4 2 = 2$ 2nd term = $2 \times 4 - 2 = 6$ 3rd term = $3 \times 4 - 2 = 10$ 4th term = $4 \times 4 - 2 = 14$ b 20th term = $20 \times 4 - 2 = 78$
- **b** $200110011 = 20 \times 4 = 2 = 1$
- **3** -25, -18, -11, -4, **3, 10**

- **b** Number of triangles: 2, 4, 6, 8, 10, 12, 14, 16
 So 16 triangles in pattern number 8
 Or, 2 + 7 × 2 = 16 triangles
- **c** No. The number of triangles forms an even number sequence and 35 is odd.

5 a 3, 7, 11, 15, 19

- Common difference = +4
- $4 \times \text{term number} = 4, 8, 12, 16, 20$
- -1 to get each term in the original sequence So, *n*th term is 4n - 1
- 30, n in terms 4n =
- **b** 4n 1 = 99
 - 4*n* = 100
 - *n* = 25

Yes, 99 is a term in the sequence because 25 is an integer.

Non-linear sequences

1 1, 3, 5, 7, 9, ... Arithmetic sequence (Term-to-term rule is add 2)

1, 2, 4, 8, 16, ... Geometric sequence (Term-to-term rule is multiply by 2, or double)

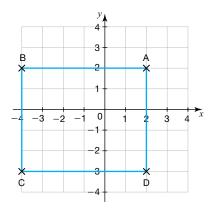
1, 4, 5, 9, 14, ... Fibonacci-type sequence (Next term of sequence is found by adding the previous two terms together)

1, 4, 9, 16, 25, ... Square-number sequence (Sequence of square numbers 1^2 , 2^2 , 3^2 , 4^2 ...)

- **2 a** 4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$ (÷ 2)
 - **b** 5, 0.5, 0.05, **0.005, 0.0005** (÷ 10)
 - **c** $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$ (÷ 2)
 - **d** $\frac{1}{9}, \frac{1}{3}, 1, 3, 9 (\times 3)$
 - **e** −0.1, −0.2, −0.4, −**0.8,** −**1.6** (× 2)
 - f 3, -6, 12, -24, 48 (× -2)
- **3** When *n* = 5:
- $3 \times 5^2 4 = 3 \times 25 4 = 71$
- **4 a** 1st term = *a* 2nd term = *b*
 - 3rd term = a + b
 - 4th term = b + a + b = a + 2b
 - 5th term = a + b + a + 2b = 2a + 3b
 - **b** b = 5 2a + 3b = 23 (Substitute b = 5) $2a + 3 \times 5 = 23$ 2a + 15 = 232a = 8

Show that...

a = 4

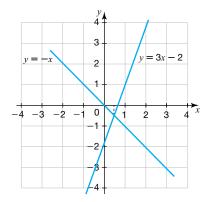

- 1 a LHS = 4(x 3) + 2(x + 5) = 4x 12 + 2x + 10= 6x - 2RHS = 3(2x - 1) + 1 = 6x - 3 + 1 = 6x - 2LHS = RHS So $4(x - 3) + 2(x + 5) \equiv 3(2x - 1) + 1$ b LHS = $(x + 2)(x - 2) = x^2 - 2x + 2x - 4 = x^2 - 4$ LHS = RHS So $(x + 2)(x - 2) = x^2 - 4$ 2 Rod A = n Rod B = n + 1Rod C = n + 2
 - $\operatorname{Rod} A + \operatorname{Rod} C = n + n + 2$
 - = 2*n* + 2
 - = **2**(*n* + 1)
 - Rod A + Rod C is 2 times the length of rod B.

Functions

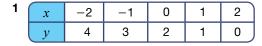
- **1 a** $10 \times 3 3 = 30 3 = 27$
 - **b** $(9+3) \div 3 = 12 \div 4 = 4$ **c** If x = y, 3x - 3 = x 2x - 3 = 0 2x = 3 $x = \frac{3}{2}$
 - $(\text{Or } x = 1 \frac{1}{2})$

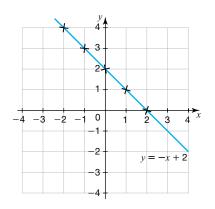
Coordinates and midpoints

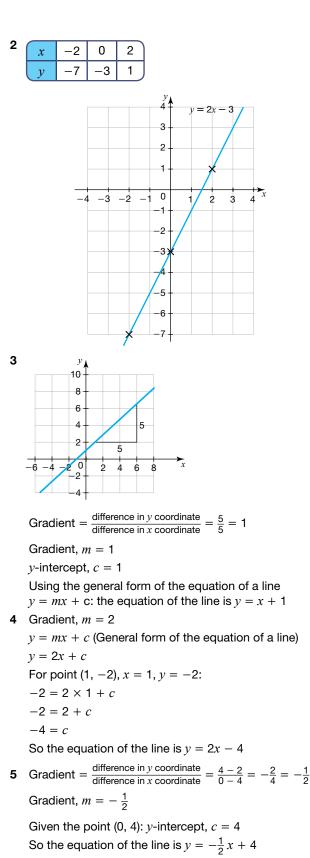
- 1 a A(2, 2)
 - $\boldsymbol{b} \ \ \text{and} \ \boldsymbol{c}$

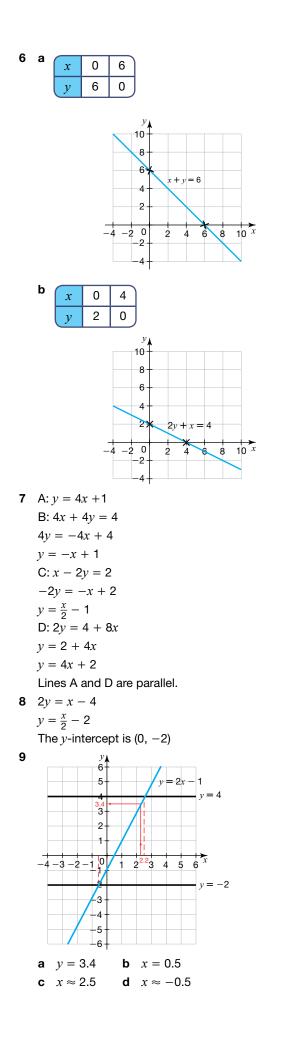


d B(-4, 2), D(2, -3) x-coordinate: 2 + (-4) = -2 $-2 \div 2 = -1$ y-coordinate: -3 + 2 = -1 $-1 \div 2 = -0.5$ Midpoint is (-1, -0.5)

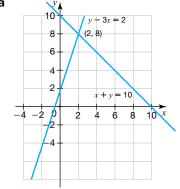

Straight-line graphs

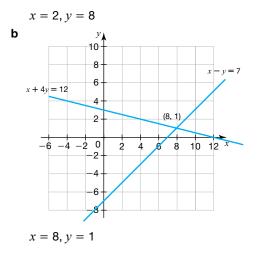

Stretch it!


To solve the equation, you need to find where the graph of y = 3x - 2 intersects the graph of y = -x.



So the solution to 3x - 2 = -x is x = 0.5.

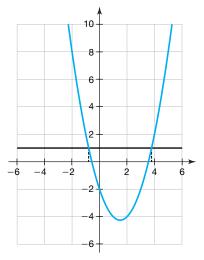



Solving simultaneous equations

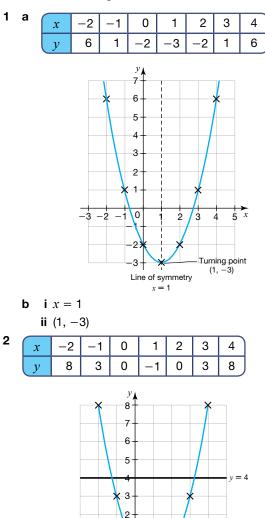
1	а	2x + y = 4	(1)
		3x - y = 1	(2)
		(1) + (2): 5x = 5	
		<i>x</i> = 1	
		Substitute $x = 1$ in (1)	
		$2 \times 1 + y = 4$	
		2 + y = 4	
		y = 2	
		Solution: $x = 1, y = 2$	
	b		(1)
	~	2x + y = 4	(2)
		(1) + (2): 3x = 9	(_)
		x = 3	
		Substitute $x = 3$ into (1)	
		3 - y = 5	
		•	
		3 = y + 5	
		y = -2	
	_	Solution: $x = 3, y = -2$	(4)
	С	2x + y = 8	(1)
		x + y = 2	(2)
		(1) - (2): x = 6	
		Substitute $x = 6$ into (2)	
		6 + y = 2	
		y = -4	
		Solution: $x = 6, y = -4$	
	d	4x - y = 10	(1)
		x + 2y = 7	(2)
		(1) \times 2: 8 $x - 2y = 20$	(3)
		(2) + (3): $9x = 27$	
		<i>x</i> = 3	
		Substitute $x = 3$ into (2):	
		3 + 2y = 7	
		2y = 4	
		y = 2	
		Solution: $x = 3, y = 2$	
	е		(1)
	Ū	x - 4y = 8	(2)
		(1) \times 4: 8x + 4y = 28	(3)
		$(1) \times 4.0x + 4y = 20$ (2) + (3): 9x = 36	(0)
		x = 4	
		Substitute $x = 4$ into (1):	
		$2 \times 4 + y = 7$	
		8 + y = 7	
		y = -1	
		Solution: $x = 4, y = -1$	
	f	2x + 3y = 7	(1)
		3x - 2y = 4	(2)
		(1) \times 2: 4 <i>x</i> + 6 <i>y</i> = 14	(3)
		(2) \times 3: 9 x - 6 y = 12	(4)
		(3) + (4): 13x = 26	
		x = 2	

Substitute x = 2 into (1) $2 \times 2 + 3y = 7$ 4 + 3y = 73y = 3y = 1Solution: x = 2, y = 1**2** x + y = 21(1) x - y = 7(2) (1) + (2): 2x = 28*x* = 14 Substitute x = 14 into (1) 14 + y = 21v = 7The two numbers are 7 and 14. **3** Let b = burger and c = cola. 3b + 2c = 505(1) 3b + 4c = 725(2) (2) - (1): 2c = 220c = 110Substitute c = 110 into (1) $3b + 2 \times 110 = 505$ 3b + 220 = 5053b = 285*b* = 95 A burger costs 95p. A cola costs £1.10.

4 a



Quadratic graphs


Stretch it!

Rearrange $x^2 - 3x = 3$, to give $x^2 - 3x - 2 = 1$

You can solve this graphically by finding where the lines $y = x^2 - 3x - 2$ and y = 1 intersect.

So the solutions to the equation $x^2 - 3x = 3$ are x = 3.8 and x = -0.8. Acceptable readings from the graph would be in the range 3.6 to 3.9 and -0.6 to -0.9.

0

2

3

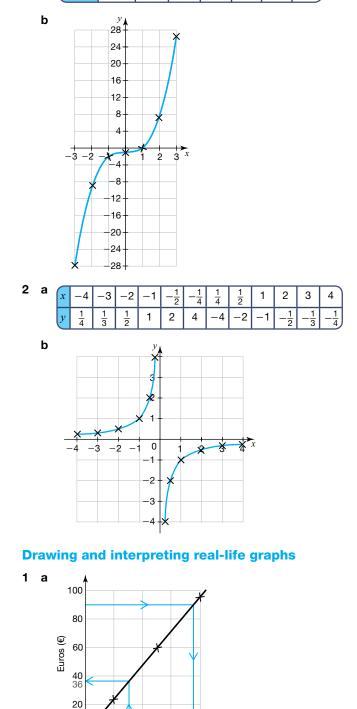
2 3 4 5

-3 -2 -1

x

a x = 0 and x = 2 **b** $x \approx -1.2$ and $x \approx 3.2$ **c** x = 1

Solving quadratic equations


Stretch it! $\frac{x^2}{2} = 8$ $\bar{x^2} = 16$ $x = \sqrt{16}$ So x = 4 or x = -4 $2x^2 = 50$ $x^2 = 25$ $x = \sqrt{25}$ So x = 5 or x = -5**1 a** $x^2 - 4x = 0$ x(x-4)=0Either x = 0 or x - 4 = 0x = 4So x = 0 or x = 4**b** $x^2 + 7x = 0$ x(x + 7) = 0Either x = 0 or x + 7 = 0x = -7So x = 0 or x = -7**c** $x^2 - 16 = 0 (x^2 - 16 = x^2 - 4^2)$, Factorise) (x + 4)(x - 4) = 0Either x + 4 = 0 or x - 4 = 0x = -4*x* = 4 So x = -4 or x = 4**d** $x^2 + 10x + 9 = 0$ (x + 1)(x + 9) = 0Either x + 1 = 0 or x + 9 = 0*x* = -1 x = -9So x = -1 or x = -9**e** $x^2 + x - 12 = 0$ (x-3)(x+4) = 0Either x - 3 = 0 or x + 4 = 0*x* = 3 x = -4So x = 3 or x = -4f $x^2 - 6x - 16 = 0$ (x + 2)(x - 8) = 0Either x + 2 = 0 or x - 8 = 0*x* = -2 *x* = 8 So x = -2 or x = 8**2 a** $y = x^2 - 49$ (Set y = 0) $x^2 - 49 = 0 (x^2 - 49 = x^2 - 7^2)$, Factorise) (x + 7)(x - 7) = 0Either x + 7 = 0 or x - 7 = 0x = -7*x* = 7 So x = -7 or x = 7**b** $y = x^2 - 3x$ (Set y = 0) $x^2 - 3x = 0$ x(x - 3) = 0

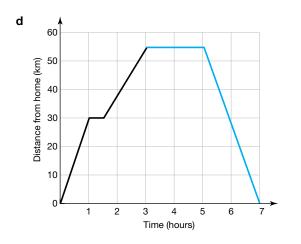
Either
$$x = 0$$
 or $x - 3 = 0$
 $x = 3$
So $x = 0$ or $x = 3$
c $y = x^2 + 7x + 6$ (Set $y = 0$)
 $x^2 + 7x + 6 = 0$
 $(x + 1)(x + 6) = 0$
Either $x + 1 = 0$ or $x + 6 = 0$
 $x = -1$ $x = -6$
So $x = -1$ or $x = -6$

Cubic and reciprocal graphs

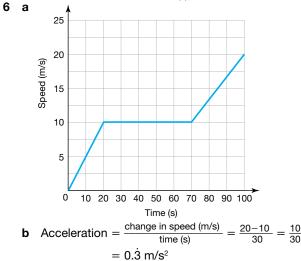
1

а	x	-3	-2	-1	0	1	2	3
	у	-28	-9	-2	-1	0	7	26

0


20

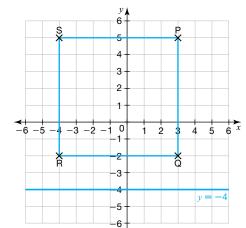
40


Pounds (£)

60 75 80

- **b** i €36 ii £75
- c From the graph: £30 = €36So $£90 = €36 \times 3 = €108$ Ring is cheaper in France.
- **2 a** Monthly charge = £10 (cost of 0 minutes from the graph)
 - **b** Gradient = $\frac{30}{240}$ = 0.125 Charge per minute of calls is 13p.
- **3** A: The temperature is steadily increasing.
 - B: The temperature remains constant.
 - C: The temperature rises steadily for a period and then remains constant.
- 4 a 30 minutes (Horizontal line on graph)
 - **b** 55 km
 - **c** Speed before break = $\frac{\text{distance (km)}}{\text{time (hours)}}$ = $\frac{30}{1}$ = 30 km/hr Speed after break = $\frac{\text{distance (km)}}{\text{time (hours)}}$ = $\frac{25}{1.5}$ = 16.7 km/hr

- 5 a 6 m/s
 - **b** 4 seconds
 - c 6 seconds
- **d** Acceleration = $\frac{\text{change in speed (m/s)}}{\text{time (s)}} = \frac{6}{4} = 1.5 \text{ m/s}^2$

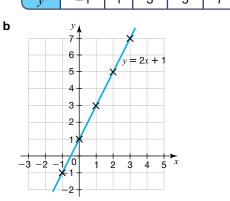


- 7 a The maximum depth of water in the bath before the person got in was 35cm
 - ${\color{black} {\bf b}} \quad \text{Between C and D, the person was taking their bath.}$
 - **c** Between D and E, the person got out of the bath.

d Running water into the bath was quicker. The slope of the line between O and A (filling the bath) is steeper than the slope of the line between E and F (emptying the bath).

Review it!

- 1 a P(3, 5)
 - **b**, **c** and **e**



- d Q(3, -2), S(-4, 5) x-coordinate: -4 + 3 = -1 $-1 \div 2 = -0.5$ y-coordinate: 5 + (-2) = 3 $3 \div 2 = 1.5$ Midpoint is (-0.5, 1.5)
- **2 a** 2x + 8 = 42x = -4x = -2
 - **b** $4 \times 4 3 \times 3 = 16 9 = 7$
 - **c** Millie is correct. When x = 4, $3x^2 = 3 \times 4^2 = 3 \times 16 = 48$ (George has worked out $(3x)^2$ instead.)
- **3 a** 4(2*x* + 3)

b
$$m^4 \times m = m^{4+1} = m^5$$

c $\frac{x^8}{x^3} = x^{8-3} = x^5$

a
$$x -1 0 1 2 3$$

c Compare y = 2x + 1 with y = mx + c (general form of the equation of a line): Gradient, m = 2

5
$$4x + 4 = x + 13$$

 $3x + 4 = 13$
 $3x = 9$
 $x = 3$
6 **a** $x \le 2$
b $\underbrace{-2 - 1}_{-2 - 1}$ $\underbrace{0}_{0}$ $\underbrace{1}_{2}$ $\underbrace{3}_{3}$ $\underbrace{4}_{4}$
c $x = 1, 2, 3$
d $4x + 2 \le 2x + 5$
 $2x + 2 \le 5$
 $2x \le 3$
 $x \le \frac{3}{2}$
(Or $x \le 1 \frac{1}{2}$)
Largest integer value of x that satisfies the
inequality = 1
7 **a** $3, 9, 15, 21, 27, 33$
b No. This is a sequence of odd numbers and 44
is even.
c When $n = 5$:
 $2n^2 - 3 = 2 \times 5^2 - 3 = 2 \times 25 - 3 = 47$
8 $(x + 3)(x + 4) = x^2 + 4x + 3x + 12 = x^2 + 7x + 12$
9 The opposite sides of a rectangle are equal in length so:
 $5x - 8 = 2x + 4$
 $3x - 8 = 4$
 $3x = 12$
 $x = 4$
 $14 - 2y = 4y + 2$
 $12 = 6y$
 $2 = y$
10 **a** $12m$
b $3p \times 4p = 3 \times 4 \times p \times p = 12p^2$
c $12x + 2 = \frac{12x}{2} = 6x$
11 **a**
 y^{0}
 y^{0}
 y^{0}
 y^{0}
 y^{0}
b $i = 25cm$
ii From the graph: 25cm = 10 inches
So $50cm = 10 \times 2 = 20$ inches
c From the graph: 10 inches = 25cm
So 60 inches = 25 \times 6 = 150 cm

Cost of beading = $150 \times 2 = 300p$

Cost = £3.00

12 a T = 12.50x + 10**b** 72.50 = 12.50x + 1062.50 = 12.50x5 = xSuzanne hired the costume for 5 days. **13 a** $4x + 2 \le 8$ $4x \le 6$ $x \le \frac{6}{4} = \frac{3}{2}$ $(\text{Or } x \le 1 \frac{1}{2})$ **b** 3x - 4 < 173*x* < 21 *x* < 7 $4x + 2 \ge 22$ $4x \ge 20$ $x \ge 5$ If x < 7 and $x \ge 5$ then x = 6 and x = 5 satisfy both. 14 Ollie has squared each term inside the brackets rather than squaring the whole bracket. Correct working: $(x + 4)^2 = (x + 4)(x + 4) = x^2 + 4x + 4x + 16 = x^2 + 8x + 16$ **15** $P = \frac{Q}{4} + R$ $P - R = \frac{Q}{4}$ 4(P-R) = Q**16 a** m(m + 8)**b** (x + 3)(x + 4)**17 a** 2, 5, 8, 11, 14 Common difference = +3 $3 \times \text{term number: } 3, 6, 9, 12, 15$ - 1 to get each term in the original sequence So *n*th term = 3n - 1**b** 2n - 3 = 1122*n* = 115 *n* = 57.5 No, Kadena is incorrect. 112 cannot be a term in the sequence because 57.5 is not an integer. **18 a** 4(x + 5) - 3(2x - 1) = 4x + 20 - 6x + 3 = -2x + 23**b** $4a^{3}b^{2} \times 5a^{2}b = 4 \times 5 \times a^{3} \times a^{2} \times b^{2} \times b$ $= 20 \times a^{3+2} \times b^{2+1} = 20a^5b^3$ **19** Perimeter = 3x - 2 + 2x + 1 + 3x + 5 + 2x = 10x + 410x + 4 = 4910x = 45x = 4.5**20 a** 1st term: *a* 2nd term: b 3rd term: a + b4th term: b + a + b = a + 2b5th term: a + b + a + 2b = 2a + 3b6th term: a + 2b + 2a + 3b = 3a + 5b7th term: 2a + 3b + 3a + 5b = 5a + 8b**b** a + b = 5(1) 5a + 8b = 34(2) $(1) \times 5: 5a + 5b = 25$ (3)

(2) - (3): 3b = 9 b = 3Substitute b = 3 into (1) a + 3 = 5a = 2

Ratio, proportion and rates of change

Units of measure

- **1 a** 3000 m
 - **b** 75 mins
 - c 13 000 cm²
 - d 3.52 litres
 - e 7200 seconds
 - f 14 kg
- **2** $4.5 0.325 = 4.175 \,\text{kg}$ or $4500 325 = 4175 \,\text{g}$
- **3** $5 \div 2.2 = 2.27$ kg

Ratio

Stretch it! 31 + 25 = 56, fraction male $= \frac{31}{56}$ 1 a 1:4 b 1:3:4 c 4:5

- **1 a** 1:4 **b 2** 35:5 = 7:1
- **3 a** 7:1
 - **b** $800 \div (7+1) = 100$
 - $1 \times 100 = 100$ tickets
- **4 a** 3:2
- **b** $\frac{3}{5}$ of 200 = (200 ÷ 5) × 3 = 120
- 5 $1500 \text{ g} \div (2 + 3) = 300$ 2 × 300 = 600 g or 0.6 kg
- **6** $9 \div 3 = 3$
- $4 \times 3 = 12 \, \text{cm}$
 - $5 \times 3 = 15 \, \text{cm}$
- **7** s = 20t
- $\begin{array}{ll}
 \mathbf{8} & 5-2 = 3 \\
 60 \div 3 = 20g \\
 2 \times 20g = 40g
 \end{array}$

Scale diagrams and maps

- **Stretch it!** 50 miles on ground $=\frac{50}{x}$ miles on map 1 mile = 1610 m = 161000 cm 50 miles on ground $=\frac{50}{x} \times 161000$ cm* on map
- **1** A, B, F
- **2 a** $3 \times 12 = 36$ km
- **b** 15 ÷ 12 = 1.25 cm
- **3** $12 \times 1000 = 12\ 000\ \text{cm} = 120\ \text{m}$
- 4 a 2 cm: 2 × 50 000 = 100 000 cm = 1 km (Any answer within the range of 1 km - 1.1 km is acceptable.)
 - **b** 250°

Fractions, percentages and proportion

1 $\frac{20}{3500} = \frac{1}{175}$

16

- **2** 2 + 3 + 8 = 13 hours 24 13 = 11 hours
 - $\frac{11}{24}$ of the day remaining

- **3 a** $\frac{15}{20} = \frac{3}{4}$
 - **b** $1 \frac{3}{4} = \frac{1}{4} = 25\%$
- 4 1 + 2 + 7 = 10, $\frac{1}{10}$ = 10%
- 5 School A: 125:145 = 25:29 School B: 100:120 = 5:6
 - No since the ratios are not equivalent.
- $\begin{array}{ll} \textbf{6} & 150 \div 100 = 1.5 \\ & 1.5 \times 22\,\text{g} = 33\,\text{g} \end{array}$

 $33g \div 8 = 4.125g$

Direct proportion

Stretch it!

For two values to be in direct proportion, when one is 0 the other must be 0. Here, when distance is 0 miles, the fee is $\pounds 2$.

- 1 A and E
- a i 20 meringues = 2 eggs, divide both by 2 to give:
 10 meringues = 1 egg

3 eggs: $3 \times 10 = 30$ meringues

- ii 20 meringues = 120 g of sugar, divide both by 2 to give: 10 meringues = 60 g of sugar. Multiply both by 10 to give 100 meringues
- b 20 meringues = 2 eggs, divide both by 2 to give
 10 meringues = 1 egg, multiply both by 7 to give
 70 meringues = 7 eggs
- **3** 675 ÷ 4.5 = 150 minutes = 2 hours 30 minutes

4 A, D

Inverse proportion

- 1 D
- 2 At 60 miles it takes 15 minutes. $60 \times \frac{2}{3} = 40$
 - $15 \div \frac{2}{3} = 22.5$ mins
- **3** $2 \times 3 = 6$ decorators

$$5 \div 3 = 1\frac{2}{3}$$
 of a day

- **4 a** 2
 - **b** The age of the chicken and the number of eggs it lays are in inverse proportion, this means that as the age of the chicken increases, the number of eggs it lays decreases.

Working with percentages

Stretch it! £128

Stretch it! Let percentage rate = *x*

 $(1 + \frac{x}{100})^5 \times \pounds 100 = \pounds 110$ $(1 + \frac{x}{100})^5 = \frac{110}{100}$ $1 + \frac{x}{100} = \sqrt[5]{\frac{110}{100}}$ $1 + \frac{x}{100} = 1.02$ $\frac{x}{100} = 0.02$ x = 2

Percentage interest is 2%

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

1 a $1.03 \times 50 =$ £51.50 **b** $2.48 \times 400 = 992$ **c** $0.195 \times 64 = 12.48$

- **2** 45 40 = 5, $\frac{5}{40} \times 100 = 12.5\%$
- $24 \div 115 = 0.209, \ 0.209 \times 100 = 20.9^{\circ}C$ 3
- 4 15 000 \times 1.20³ = 25920
- 5 20% is $\frac{1}{5}$ of the price. $30 \times 5 =$ £150

Compound units

Stretch it! $\frac{100}{x}$ mph

- **1** 29.50 \div 0.18 = 164 or 2950 \div 18 = 164 units
- Time $=\frac{80}{120}=\frac{2}{3}$ hour = 40 minutes
- Density $= \frac{0.72}{3} = 0.24 \text{ g/cm}^3$ 3
- Pressure = $\frac{12}{2}$ = 6N/m² 4
- $3 \text{ m/s} = 3 \times 60 \text{ m/minute} = 3 \times 60 \times 60 \text{ m/hour}$ 5 = 10800 m/hour = 10.8 km/hour
- 0.6 litres per second = 0.6×60 litres per minute 6 $= 0.6 \times 60 \times 60$ litres per hour = 2160 litres per hour.

2160 ÷ 4.55 = 475 gallons

475 gallons per hour (to the nearest whole number)

7 Bolt: 100 m in 9.58 seconds = 10.4 m/sCheetah: 120 km/h = 120000 m/hour = 120000 ÷ 60 m/min $= 2000 \, \text{m/min}$ $= 2000 \div 60 \,\text{m/sec} = 33.3 \,\text{m/s}$

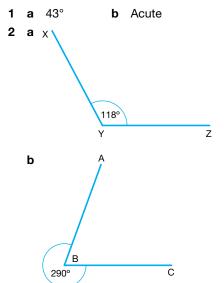
The Cheetah is fastest.

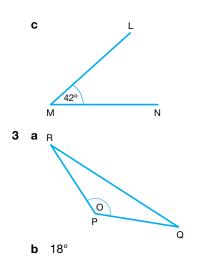
Review it!

- **1 a** 3.2 × 1000 = 3200 m
 - **b** $9 \times 60 = 540$ seconds
 - **c** $0.4 \times 1000 = 400$ ml
- **2** 4600 ÷ 1000 = 4.6 km
- **3** 2.5 × 60 = 150 minutes
- $1.1 \times 0.32 = 0.352 \text{ m}^2 \text{ or } 110 \times 32 = 3520 \text{ cm}^2$ 4
- $3 \times 10000 = 30000 \,\mathrm{cm^2}$ 5
- $\frac{5}{12}$ 6
- **7** 26:18 = 13:9
- **8** 100 85 = 15, 15 ÷ 3 = 5 minutes
- 9 density = $\frac{345}{0.15}$ = 2300 kg/m³
- **10** $10 8 = 2 \text{ km}, \ \frac{2}{8} \times 100 = 25\%$
- **11** 25 13 = 12, $\frac{12}{25}$ OR 48%
- **12** 15 + 5 + 3 = 23 mins <u>23</u> 90
- **13** 20 ÷ $\left(\frac{4}{5}\right)$ = 25 hours = 1 day and 1 hour
- **14 a** $50 \div 5 = 10$, Josie: $1 \times 10 = 10$ marbles, Charlie: $4 \times 10 = 40$ marbles, Charlie has 30 more. **b** C = 4J
- **15** $\frac{100}{360} \times 100 = 28\%$
- **16** $0.8 \times 1200 =$ £960
 - $0.9 \times 960 =$ £864

- 6cm **18** $1.02^3 \times 1500 =$ £1591.81 **19** 32 000 ÷ 4 = 8000 people 20 393 ÷ 125 = 3.144 hours = 3 hours 9 minutes **21** 2.50 + 1.90 + (2 \times 5.30) = £15 $1.05 \times \text{\pounds}15 = \text{\pounds}15.75$ **22** 37 + 15 + 4 + 19 = 75 $\frac{15}{75} \times 100 = 20\%$ **23** $0.045 \times 3000 =$ £135 $3000 + (5 \times 135) =$ £3675 **24** 30÷ 3 = 10 $boys = 2 \times 10 = 20$ $Girls = 1 \times 10 = 10$ Boys = 20 - 2 = 18Girls = 10 + 3 = 13
 - 18:13

17 1 cm: 50 000 cm


 $3 \text{ km} \div 0.5 = 6$


 $50\,000\,\text{cm} = 0.5\,\text{km}$

- **25** Men to women is 7:6 = 35:30 Ratio of women to children is 15:2 = 30:4Ratio of men to women to children is 35:30:4 35 + 30 + 4 = 69 $3450 \div 69 = 50$ $35 \times 50 = 1750$ men
- 26 No for two things to be in direct proportion when one is zero the other must be zero; the graph does not go through the origin so this is not the case.
- 27 Neither, since the time taken to cook increases as the weight increases it is not in indirect proportion. It is not in direct proportion since a graph to illustrate the relationship would not go through the origin.
- **28** speed = $\frac{\text{distance}}{\text{time}} = \frac{0.05}{17} = \frac{1}{340}$ hours = $\frac{3}{17}$ mins = 11 seconds
- 29 She is incorrect since the ratio of females to males must be the same for them to have equivalent proportions: 35:60 is not equivalent to 12:37.

Geometry and measures

Measuring and drawing angles

Using the properties of angles

- 1 Angles around a point add up to 360° so:
 - a + 112 + 88 + 106 = 360

a + 306 = 360

- $a = 54^{\circ}$
- **2 a** i $a = (180 40) \div 2 = 70^{\circ}$

ii Base angles of an isosceles triangle are equal.

- **b** Exterior angle of a triangle is equal to the sum of the interior angles at the other two vertices so:
 - b = 70 + 40
 - $b = 110^{\circ}$

Or, angles on a straight line add up to 180° so:

- $b = 180 70 = 110^{\circ}$
- 3 Angles around a point add up to 360° so:

5x + 9x + 108 = 360

14x + 108 = 360

$$14x = 252$$

$$x = 18^{\circ}$$

a i *x* = 180 - 126 = 54° 4

ii Angles on a straight line add up to 180°.

b Angles in a quadrilateral add up to 360° so:

$$y + 135 + 54 + 88 = 360$$

$$y + 277 = 360$$

 $v = 83^{\circ}$ **a** Angles on a straight line add up to 180° so:

- x = 180 84
- $x = 96^{\circ}$
- **b** i $y = 96^{\circ}$

5

ii Use the fact that corresponding angles are equal, then the fact that vertically opposite angles are equal.

Or, use the fact that alternate angles are equal, then use angles on a straight line add up to 180°.

- **a** Base angles of an isosceles triangle are equal 6 so $a = 58^{\circ}$.
 - **b** Angles in a triangle add up to 180° so:

b = 180 - 58 - 58

$$b = 64^{\circ}$$

c Alternate angles are equal so $c = 58^{\circ}$ (since angle a = angle c).

Or, since opposite angles of a parallelogram are equal:

$$b + c = 122$$

64 + c = 122

- $c = 58^{\circ}$
- 7 Angle $BAD = 62^{\circ}$ (Opposite angles of a parallelogram are equal)

Angle $ADE = 62^{\circ}$ (Alternate angles are equal)

x = 180 - 62 - 62 (Base angles of an isosceles triangle are equal)

$$x = 56$$

8 Angle $ACB = 36^{\circ}$ (Base angles of an isosceles triangle are equal)

Angle ABC = 180 - 36 - 36 (Angles in a triangle add up to 180°)

Angle ABC = 108°

 $x = 108^{\circ}$ (Alternate angles are equal)

Using the properties of polygons

Stretch it!

2

1 The angle sum of a triangle is 180°.

Sum of interior angles of a hexagon = $4 \times 180^{\circ} = 720^{\circ}$.

Polygon	Number of sides (n)	Number of triangles formed	Sum of interior angles
Triangle	3	1	180°
Quadrilateral	4	2	360°
Pentagon	5	3	540°
Hexagon	6	4	720°
Heptagon	7	5	900°
Octagon	8	6	1080°
Decagon	10	8	1440°

3
$$n-2$$

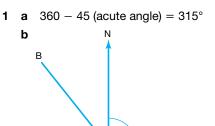
4 $180 \times (n-2)$

Stretch it! Exterior angle of a regular hexagon = $360 \div 6$ $= 60^{\circ}$

Interior angle = $180 - 60 = 120^{\circ}$

Three hexagons meet at a point, so 120 + 120 + 120 $= 360^{\circ}$

Similarly, interior angle of an octagon = $180 - (360 \div 8)$ = 135°


Interior angle of a square = 90° , so 135 + 135 + 90 $= 360^{\circ}$.

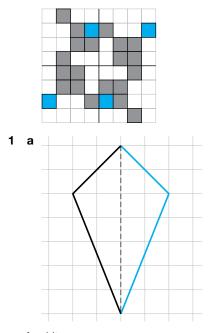
Regular pentagons have an interior angle of 108°. This does not divide equally into 360°, so these shapes will not fit together at a point in this way.

- 1 Regular decagon has 10 equal sides. Exterior angle = $360^{\circ} \div 10 = 36^{\circ}$
- **2** a Number of sides = $360^\circ \div 15^\circ = 24$
 - **b** Angles on a straight line add up to 180° so: Interior angle + exterior angle = 180 Interior angle + 15 = 180 Interior angle = 165° Sum of interior angles = $24 \times 165 = 3960^{\circ}$

3 Exterior angle = $360^\circ \div 8 = 45^\circ$ Angles on a straight line add up to 180° so: $x = 180^\circ - 45^\circ = 135^\circ$

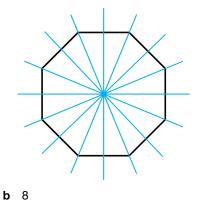
Using bearings

2 Bearing of P from $Q = 180^{\circ} + 164^{\circ} = 344^{\circ}$


115

3 Kirsty is correct.

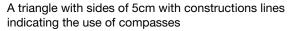
The bearing is 314° ($360^{\circ} - 46^{\circ}$) as it must be measured clockwise from north.

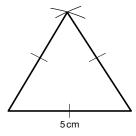

Properties of 2D shapes

Stretch it!

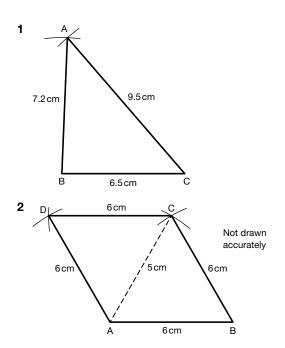
b kite

2 a 8 possible lines of symmetry:

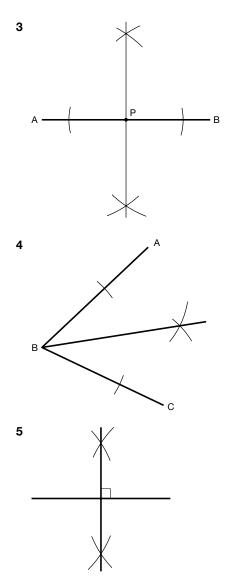

- 3 a A rectangle has rotational symmetry of order 2.
 - **b** A **rhombus** has all sides equal and rotational symmetry of order 2.
 - **c** A kite has **1** line of symmetry and **no** rotational symmetry.
 - **d** The diagonals of a **square** and a **rhombus** bisect each other at 90°.

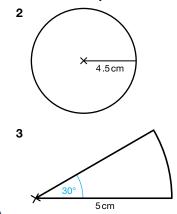

Congruent shapes

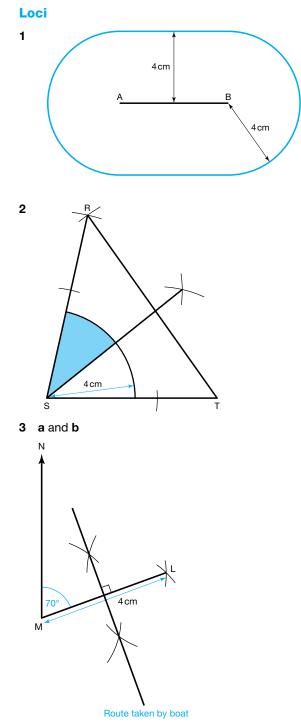
- 1 Any accurate copy of shape A, in any orientation.
- **2** a Corresponding angles are equal so $x = 120^{\circ}$
 - **b** Corresponding sides are the same length so y = 12 cm
- **3** a SSS (each triangle has equal sides: 3 cm, 3 cm, 2.5 cm)
 - **b** ASA (two angles, 70° and 60°, and the included side, 8 cm, are equal)


Constructions

Stretch it!






19

Drawing circles and parts of circles

- **1 a** A **chord** is a straight line that does not pass through the centre of a circle but touches the circumference at each end.
 - **b** A **tangent** is a straight line that touches the outside of a circle at one point only.
 - **c** A **diameter** is a straight line through the centre of a circle that touches the circumference at each end.
 - d An arc is part of the circumference of a circle.
 - e A **radius** is a straight line from the centre of a circle that is half the length of the diameter.
 - f The part of a circle that has a chord and an arc as its boundary is called a **segment.**

Perimeter

- 1 $4 \times 7.2 = 28.8 \,\mathrm{cm}$
- **2** $7 + 9 + 9 + 5 + 5 + 7 = 42 \,\mathrm{cm}$
- **3** Curved edge = $2\pi r \div 2 = (2 \times \pi \times 4) \div 2 = 4\pi$ Perimeter = $4\pi + 2 \times r = 4\pi + 8$ cm So k = 4 and b = 8
- 4 Perimeter = $(\pi \times 30) + 100 + 100 = 200 + 30\pi$ m
- 5 Perimeter = $\left(\frac{1}{2} \times \pi \times 32\right) + 32 + 32 = 16\pi + 64 \text{ cm}$ Ribbon = $16\pi + 64 + 5 = 16\pi + 69 \text{ cm} = 119.3 \text{ cm}$ 120 cm must be bought $12 \times \pounds 0.15 = \pounds 1.80$

Area

Stretch it! Area of a semicircle $=\frac{\pi r^2}{2}$, area of a quarter circle = $\frac{\pi r^2}{4}$

- **1 a** $4.5 \times 2 = 9.0 \, \text{cm}^2$
 - **b** $3 \times 1.5 = 4.5 \, \text{cm}^2$

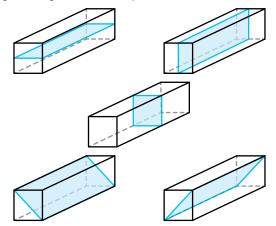
 - **c** $\frac{(5+9)}{2} \times 4 = 28.0 \text{ cm}^2$ **d** $\frac{1}{2} \times 2 \times 5 = 5.0 \text{ cm}^2$
 - **e** $\pi \times 4.5^2 = 63.6 \, \text{cm}^2$
- **2** Length of side = $12 \div 4 = 3$ cm $Area = 3^2 = 9 \text{ cm}^2$
- 3 Shaded triangles would fit together to form one triangle with base 10 - 6 = 4. So area of shaded triangles $=\frac{1}{2} \times 4 \times 7 = 14 \text{ cm}^2$ Area of trapezium = $\frac{(6+10)}{2} \times 7 = 56 \text{ cm}^2$ Fraction of the shape that is shaded = $\frac{14}{56} = \frac{1}{4}$
- 4 Area of whole shape = $6 \times 8 = 48 \text{ cm}^2$ Fraction shaded $=\frac{6}{16}=\frac{3}{8}$ Area shaded = $\left(\frac{3}{8}\right) \times 48 = 18 \text{ cm}^2$
- **5** Area of square = $46 \times 46 = 2116 \text{ cm}^2$ Each circle has radius = 11.5 cm Area of four circles = $4 \times \pi \times 11.5^2 = 1661.9 \text{ cm}^2$ Shaded area = $2116 - 1661.9 = 454.1 \, \text{cm}^2$

Sectors

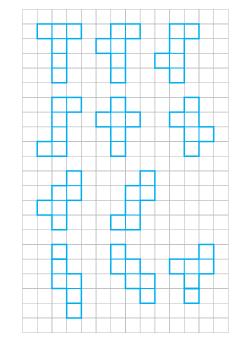
- 1 Area = $\frac{1}{2} \times \pi \times 5^2$ = 39.3 cm² Perimeter = $\frac{1}{2} \times \pi \times 10 + 10 = 25.7$ cm 2 Area = $\frac{3}{4} \times \pi \times 4^2 = 12\pi$ cm²
- **3** Area = $\frac{1}{2} \times \pi \times 3^2 = 14.1 \text{ m}^2$ $14.1 \div 2 = 7.05$, so 8 bags needed. $8 \times 14.99 =$ £119.92

3D shapes

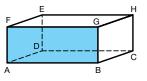
Stretch it!

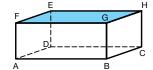

3D shape	Faces	Edges	Vertices
Cube	6	12	8
Cuboid	6	12	8
Square-based pyramid	5	8	5
Tetrahedron	4	6	4
Triangular prism	5	9	6
Hexagonal prism	8	18	12

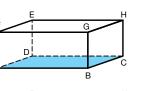
Stretch it! There are three planes of symmetry for the first cuboid:

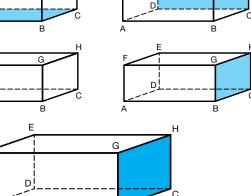


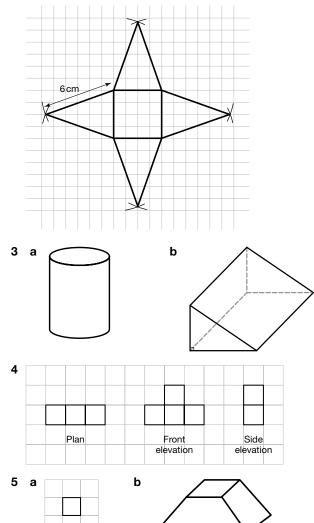
*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.


There are 5 planes of symmetry for the second cuboid: the same 3 planes as the first cuboid, plus two more planes along the diagonals of the square faces.




Stretch it!*


6 possible rectangular faces: 1



b

В

- c Kelli has not counted the hidden edges.
- 2* Draw a square in the middle with sides of 4 units (1 unit represents 1 cm). Set your compasses to 6 units and draw pairs of intersecting arcs from the corners of the square. These are the apices (top points) of the triangular sides. Draw lines for the sides of the triangles.

Volume

- **1** $\frac{4}{3} \times \pi \times 4.5^3 = 381.7 = 382 \,\mathrm{cm}^3$ (to 3 s.f.)
- **2** $\pi r^2 h + \frac{1}{3}\pi r^2 h = \pi \times 0.5^2 \times 2 + \frac{1}{3} \times \pi \times 0.5^2 \times 1.5$ = 0.625 π = 1.96 m³
- **3** $\frac{1}{3} \times \pi \times 6^2 \times 22 = \frac{1}{3} \times 792 \times \pi = 264 \pi \text{ cm}^3$ k = 264
- 4 Volume of water = $18 \times 7 \times 7 = 882 \text{ cm}^3$ $882 = 7 \times 20 \times h$ $882 = 140 \times h$ h = 6.3 cm

Surface area

- **1** $6 \times (5 \times 5) = 150 \, \text{cm}^2$
- **2** $4\pi r^2 = 4 \times \pi \times 3^2 = 36\pi \text{ cm}^2$
- **3** $18 4 = 14 \, \text{cm}^2$

4 sloping surface = $\pi \times 14 \times 45 = 630\pi$ cm² Base = $\pi \times 14^2 = 196\pi$ cm² Total surface area = $196\pi + 630\pi = 826\pi$ Percentage yellow = $\frac{630}{826} \times 100 = 76.3\%$

Using Pythagoras' theorem

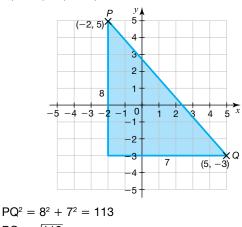
- 1 Using Pythagoras' theorem $c^2 = a^2 + b^2$: $AC^2 = AB^2 + BC^2$ $15^2 = 11^2 + BC^2$ $BC^2 = 15^2 - 11^2 = 104$ $BC = \sqrt{104}$ BC = 10.2 cm (to 3 s.f.)
- **2** $c^2 = a^2 + b^2$ $6^2 = 3.6^2 + b^2$

$$b^2 = 6^2 - 3.6^2 = 23.04$$

- $b = \sqrt{23.04}$
- *b* = 4.8

The ladder reaches 4.8 m up the wall.

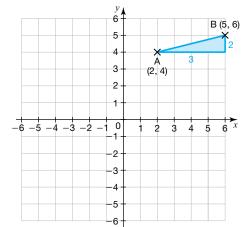
- **3** Using Pythagoras' theorem $c^2 = a^2 + b^2$:
 - $XZ^{2} = XY^{2} + YZ^{2}$ $15^{2} = XY^{2} + 9^{2}$ $XY^{2} = 15^{2} 9^{2} = 144$ $XY = \sqrt{144}$ XY = 12 cm 1 + t = 1 2 cm

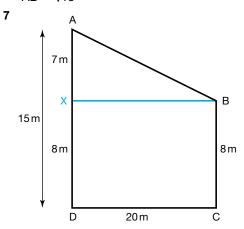

$$Area = \frac{1}{2}bh = \frac{1}{2} \times 9 \times 12$$

- Area = $54 \,\mathrm{cm^2}$
- 4 If the triangle is right-angled, $PQ^2 = PR^2 + RQ^2$ $PQ^2 = 13^2 = 169$ $PR^2 + RQ^2 = 8^2 + 5^2 = 64 + 25 = 89^*$

 $PQ^2 \neq PR^2 + RQ^2$

Claudia is not correct. Notice that PR + RQ = 8 + 5 = 13 cm = length of PQ, so PQR isn't a triangle at all, it is just a straight line!


5 P(-2, 5), Q(5, -3)


 $PQ = \sqrt{113}$ PQ = 10.63 (to 2 d.p.)

0

6 A(2, 4), B(5, 6)

$$AB^2 = 2^2 + 3^2 = 13$$

 $AB = \sqrt{13}$

Using Pythagoras' theorem
$$c^2 = a^2 + b^2$$
:
 $AB^2 = AX^2 + BX^2$
 $AB^2 = 7^2 + 20^2 = 449$
 $AB = \sqrt{449}$
 $AB = 21.2$ (to 3 s.f.)
Perimeter of field ABCD = 15 + 20 + 8 + 21
= 64.2 \approx 65m
Cost of fencing = 65 \times £14 = £910

Trigonometry

Stretch it!

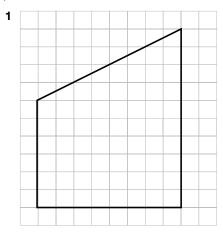
Opposite could have been 1 m, hypotenuse could have been 2 m. They could be any lengths that keep opposite and hypotenuse in the ratio 1:2.

1	а	0.4	b	0.6		С	1.0	
	d	26.6	е	48.6		f	54.7	
2	Сс	$5572^\circ = \frac{MN}{15}$		MN =	15 co	s 72	2° = 4.	6 cm
3	Та	n ABC = $\frac{6}{7}$						
	AE	$BC = \tan^{-1}\left(\frac{6}{7}\right)$						
	AE	$3C = 40.6^{\circ}$						

4 Let *x* be the depth of water.

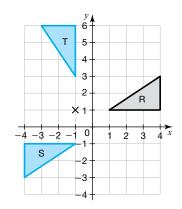
$$sin15^{\circ} = \frac{x}{10}$$
$$x = 10 sin 15^{\circ}$$
$$x = 2.6 m$$

Exact trigonometric values

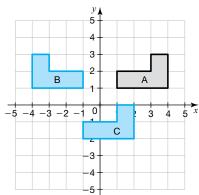

1	a 0.5 b 0	С
	d $\frac{1}{\sqrt{2}}$ e $\sqrt{3}$	
2	$\tan 45^\circ = 1 = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{\text{AC}}$	
	Therefore $AC = 4 cm$	
	$\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{4}{BC}$ $BC = 4\sqrt{2}$	
	$BC = 4\sqrt{2}$	

- Therefore BC = $4\sqrt{2}$ cm
- **3** Since: $\tan 30^\circ = \frac{1}{\sqrt{3}}$ one angle must be 30° and therefore the other is 60°
- 4 sin 30° = $\frac{1}{2}$ therefore ABC = 30° 5 cos 30° = $\frac{\sqrt{3}}{2}$ = 0.866 (3 d.p.) tan 45° = 1 Smallest to largest = 0.5, $\frac{3}{4}$, cos 30°, tan 45°

Transformations


Stretch it!

Yes. Reflection in the x axis followed by reflection in the y axis (or vice versa) will always produce a rotation of 180°.


- **2** Translation by vector $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$
- 3 a and b

.2

- 4 Reflection in the y-axis
- 5 Enlargement by scale factor $\frac{1}{2}$, centre (3, 3)

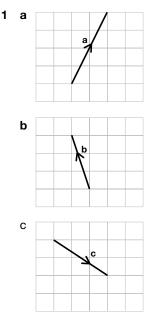
6 a and b

c Rotation of 90° clockwise about (0, 0)

Similar shapes

Stretch it!

Perimeter of ABC = 3 + 6 + 5 = 14 cm

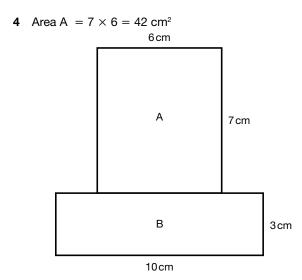

Perimeter of DEF = 6 + 12 + 10 = 28 cm

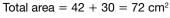
The perimeter of a shape enlarged by scale factor 2 will also be enlarged by scale factor 2.

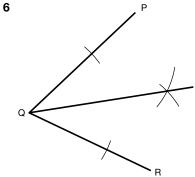

In general, all lengths on an enlarged shape, including the perimeter, are enlarged by the same scale factor.

- **1 a** Angle DFE = 30° (Corresponding angles are the same)
 - **b** Scale factor of enlargement $=\frac{\text{enlarged length}}{\text{original length}} = \frac{12}{3} = 4$ Length of EF = 4 cm × 4 = 16 cm
 - **c** Length of $AB = 8 \text{ cm} \div 4 = 2 \text{ cm}$
- **2 a** Angle MLO = 80° (Corresponding angles are the same: angle MLO = angle QPS)
 - **b** Scale factor of enlargement $= \frac{\text{enlarged length}}{\text{original length}} = \frac{9}{3} = 3$ Length of QR = 4.4 cm × 3 = 13.2 cm
 - **c** Length of LO = $12 \text{ cm} \div 3 = 4 \text{ cm}$

Vectors


*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

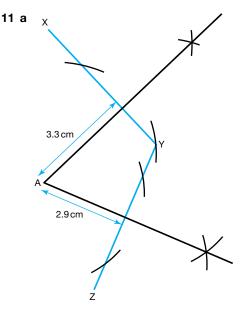

- **b** BC = 3.8 cm
- **c** $x = 50^{\circ}$
- 2 a 5 faces



Area B = $10 \times 3 = 30 \text{ cm}^2$

5 Area of parallelogram = $3 \times 12 = 36 \text{ cm}^2$ Length of side of square = $\sqrt{36} = 6 \text{ cm}$ Perimeter of square = $4 \times 6 = 24 \text{ cm}$

- 7 Rotation of 180° about (1, 0)
- 8 Angle CFE = 112° (Corresponding angles are equal) Angle CFG = $180 - 112 = 68^{\circ}$ (Angles on a straight line add up to 180°)


Angle GCF = angle CFG (Base angles of an isosceles triangle are equal)

 $x = (180 - 68 - 68) = 44^{\circ}$ (Angles in a triangle add up to 180°)

9 Shaded Area = $(10 \times 12) - ((\frac{1}{2} \times 12 \times 3) + (\frac{1}{2} \times 8 \times 7) + (\frac{1}{2} \times 10 \times 4))$ = 120 - (18 + 28 + 20)= 54 cm^2 Proportion = $\frac{54}{120} = \frac{9}{20} = 45\%$ 10 If triangle ABC is right-angled, $c^2 = a^2 + b^2$

$$c^2 = 8^2 = 64$$

 $a^2 + b^2 = 4^2 + 6^2 = 16 + 36 = 52$

 $c^2 \neq a^2 + b^2$ so triangle ABC is not right-angled.

Scale is 1 : 200

b Distance from A to YZ = 2.9 cm $2.9 \times 200 = 5800 \text{ cm} = 5.8 \text{ m}$ Distance from A to YX = 3.3 cm $3.3 \times 200 = 6600 \text{ cm} = 6.6 \text{ m}$ Difference in distance = $6.6 - 5.8 = 0.8^*$ m **12 a** $\cos 45^\circ = \frac{1}{\sqrt{2}}$ **b** Ratio of adjacent to hypotenuse is 1:2 Therefore AB = 3 cm**13** a $a + 2b = \begin{pmatrix} 4 \\ -5 \end{pmatrix} + 2 \times \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 4 \\ -5 \end{pmatrix} + \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ $= \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ **b b** - 2**a** = $\binom{2}{3}$ - 2 × $\binom{4}{-5}$ $=\binom{2}{3} - \binom{8}{-10}$ $=\left(\frac{-6}{13}\right)$ 14 15

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

16 a i 35°

1

- ii Triangle WYZ is isosceles, and base angles of an isosceles triangle are equal.
- **b** Angles in a triangle add up to 180° so:

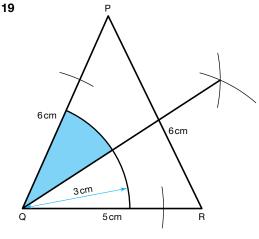
$$b = 180 - 35 - 35$$

= 110°

- **c** Triangle XYZ is isosceles, and base angles of an isosceles triangle are equal so:
 - $c = (180 70) \div 2 = 55^{\circ}$

7 Using Pythagoras' theorem
$$c^2 = a^2 + b^2$$
:

- $AC^2 = AB^2 + BC^2$
- $14^2 = 6^2 + BC^2$
- $BC^2 = 14^2 6^2 = 160$
- $BC = \sqrt{160}$
- $BC = 12.6 \, cm$ (to 1 d.p.)
- **18** Interior angle of a square = 90°
 - Sum of interior angles of an octagon (with n = 8)


= $180 \times (n - 2) = 180 \times (8 - 2) = 1080^{\circ}$ Interior angle of a regular octagon = $1080^{\circ} \div 8 = 135^{\circ}$ (Or, exterior angle of a regular octagon = $360^{\circ} \div 8 = 45^{\circ}$. Then interior angle = $180^{\circ} - 45^{\circ} = 135^{\circ}$)

Then interior angle =
$$180^{\circ} - 45^{\circ} = 135^{\circ}$$

Angles around a point add up to 360° so: x = 360 - 90 - 135

$$x = 360 - 90$$

$$x = 135^{\circ}$$

20 Divide the trapezium into a rectangle and a triangle. Draw a line DX parallel to AB, with X on the line BC. BX = 5 cm, CX = 7 cm. Using Pythagoras' theorem $c^2 = a^2 + b^2$: DC² = CX² + DX²

$$DC_{2} = CY_{2} + DY_{2}$$

$$\mathsf{DC}^2 = 7^2 + 4^2 = 65$$

$$DC = \sqrt{65}$$

DC = 8.06 (to 2 d.p.)

Perimeter of ABCD = 4 + 5 + 8.06 + 12 = 29.06 cm

21 Length of arc $= \frac{1}{4} \times 2 \times \pi \times 4 = 2\pi$ Perimeter $= 4 + (2 \times 9) + 4 + 2\pi = 32.3 \text{ cm}$

22 Area of square =
$$6 \times 6 = 36 \text{ cm}^2$$

Area of circle = $\pi \times 3^2 = 9\pi \text{ cm}^2$
Shaded area = $36 - 9\pi = 7.7 \text{ cm}^2$

23 Volume of cylinder = $\pi \times 3^2 \times 15 = 135\pi \text{ cm}^3$ 2 litres = 2000 ml = 2000 cm³ 2000 ÷ 135 π = 4.7

Glass can be completely filled 4 times.

```
24 Using Pythagoras' theorem c^2 = a^2 + b^2:
    PR^2 = PQ^2 + RQ^2
    PR^2 = 10^2 + 6^2 = 136
    PR^2 = PS^2 + SR^2
    136 = 11^2 + x^2
       x^2 = 136 - 11^2 = 136 - 121 = 15
        x = \sqrt{15}
        x = 3.87 \,\mathrm{cm} (to 3 s.f.)
25 a Curved surface area = \pi \times 6 \times 10 = 60\pi cm<sup>2</sup>
         Base area = \pi \times 6^2 = 36\pi cm<sup>2</sup>
         Total surface area = 60\pi + 36\pi = 96\pi = 300 \text{ cm}^2 to
         2 s.f.
    b Volume = \frac{1}{3} \times \pi \times 6^2 \times 8 = 96\pi = 300 \, \text{cm}^3
26 tan x = \frac{8}{6}
         x = \tan^{-1}(\frac{8}{6})
         x = 53.1^{\circ}
27 Translation by vector \begin{pmatrix} -7\\ -e \end{pmatrix}
```

Probability

1 $\frac{4}{10}$

Basic probability

Stretch it! No – each time the probability of getting an even number is $\frac{1}{2}$. You would expect to get even numbers approximately 50 times but cannot guarantee it.

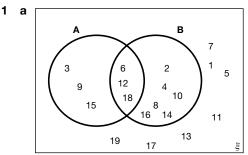
- **2** a Total number of sweets = 12 + 3 + 10 = 25 $\frac{3}{25}$ b $\frac{(3+10)}{25} = \frac{13}{25}$
- 3 Pair **a**, because when you flip a coin, you can't get both a head and a tail at the same time. (Prime numbers on a dice are 2, 3, 5 and odd numbers are 1, 3, 5, so events **b** are **not** mutually exclusive because 3 is in both groups.)
- 4 Pair **b**, because the first sweet chosen is replaced, so the possible outcomes of the second choice remain the same. (If the first sweet chosen is eaten, the possible outcomes of the second choice are altered, and so events **a** are **not** independent.)
- **5** P(6) = 1 (0.1 + 0.15 + 0.1 + 0.02 + 0.2)= 1 - 0.57 = 0.43
- 6 P(green or red) = 1 0.4 = 0.6P(green) = $2 \times P(red)$ P(red) = $\frac{0.6}{3} = 0.2$ P(green) = $2 \times 0.2 = 0.4$

Two-way tables and sample space diagrams

1		Chicken	Beef	Vegetarian
	Fruit	12	6	4
	Cake	5	3	8
	Total	17	9	12

- a 12 (this is worked out by using the numbers in the 'Total' row, which must add up to 38)
- **b** As shown in the table.

2


а		Dice 1						
			1	2	3	4	5	6
		1	2	3	4	5	6	7
	2		3	4	5	6	7	8
	-	3	4	5	6	7	8	9
	Dice 2	4	5	6	7	8	9	10
		5	6	7	8	9	10	11
		6	7	8	9	10	11	12

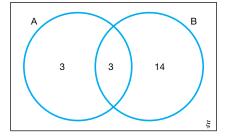
b i
$$\frac{2}{36} = \frac{1}{18}$$

ii $\frac{3}{36} = \frac{1}{12}$
iii 0

3 To score 6, the player must pick two cards showing 3. To score 2, the player must pick two cards showing 1. Since the probability of getting 3 and 3 is more than 0, and the probability of getting 1 and 1 is more than 0, there must be at least 2 of each of those numbers. So the cards must be 1, 1, 3, 3.

Sets and Venn diagrams

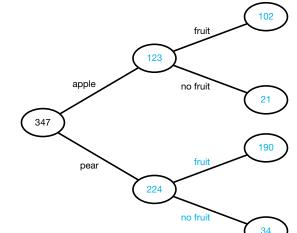
Stretch it! None

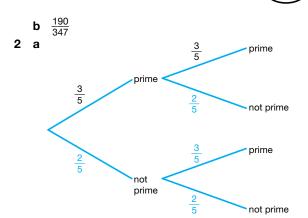

- **b** $A \cap B = \{$ multiples of 6 less than 20 $\}$ because these numbers are multiples of both 2 and 3.
- **2** a $C \cap T$ is the set of students who travel by car AND train

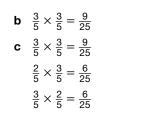
 $\mathsf{C}'\cap\mathsf{B}$ is the set of students who do NOT travel by car AND travel by bus.*

b i
$$P(C) = \frac{(14 + 11 + 11 + 2)}{(14 + 11 + 11 + 2 + 17 + 19 + 26)} = \frac{38}{100} = \frac{19}{50}$$

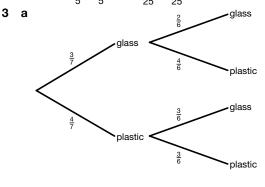
ii $P(B \cup T) = \frac{(19 + 11 + 2 + 0 + 11 + 17)}{100} = \frac{60}{100} = \frac{3}{5}$
iii $P(B' \cap T) = \frac{(11 + 17)}{100} = \frac{28}{100} = \frac{7}{25}$


3 $P(A \cap B) = \frac{3}{20}$ so there must be 3 elements in the intersection.


$$P(A) = \frac{3}{10} = \frac{6}{20}$$
 so there must be a total of 6 elements in A.
The total number of elements must sum to 20.



Frequency trees and tree diagrams


- **1 a** Apple = 123
 - Pear = 347 123 = 224Apple fruiting = 102Apple not fruiting = 123 - 102 = 21Pear not fruiting = 34Pear fruiting = 224 - 34 = 190

P(at least one prime) = 1 – P(no primes) = $1 - \frac{2}{5} \times \frac{2}{5} = 1 - \frac{4}{25} = \frac{21}{25}$

b P(two glass marbles) =
$$\frac{3}{7} \times \frac{2}{6} = \frac{6}{42}$$

P(glass then plastic) = $\frac{3}{7} \times \frac{4}{6} = \frac{12}{42}$

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

P(plastic then glass) = $\frac{4}{7} \times \frac{3}{6} = \frac{12}{42}$ P(at least one glass) = 1 - P(both plastic) $= 1 - \frac{4}{7} \times \frac{3}{6} = 1 - \frac{12}{42}$ $= 1 - \frac{2}{7} = \frac{5}{7}$

Expected outcomes and experimental probability

Stretch it! The dice has not been rolled enough times to decide if it is biased. More tests need to be carried out.

- **1** $0.45 \times 300 = 135$

2 Red $= \frac{2}{10} = \frac{1}{5}$ $\frac{1}{5} \times 100 = 20$ red sweets

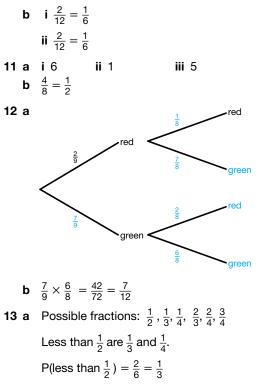
- **3** $\frac{1}{2} \times 100 = 50$ primes
- 4 a Charlie - he has carried out the most tests. $\frac{(112 + 10 + 28)}{(112 + 10 + 28 + 74 + 7 + 19)} \times 10 = 6$ b

Review it!

1 $0.12 \times 250 = 30$

3
$$1 - 0.3 = 0.7$$

5 a
$$\frac{3}{5}$$


b $(\frac{1}{5}) \times 25 = 5$

6		Pizza	Pasta	Risotto	Total	
	Cake	12	6	1	19	
	Ice Cream	10	11	10	31	
	Total	22	17	11	50	

- 7 0.2 + 5x + 0.2 + x = 16x + 0.4 = 1*x* = 0.1 P(white) = 5x + 0.2 = 0.7
- 8 a No, he has not tested his dice enough times. **b** P(2) = $\frac{9}{(12+9+16+7+6+0)} = \frac{9}{50}$ $\frac{9}{50} \times 100 = 18$
- **9** $P(R, R) = 0.1 \times 0.5 = 0.05$ $P(R, G) = 0.1 \times 0.5 = 0.05$ $P(G, R) = 0.9 \times 0.5 = 0.45$ 0.05 + 0.05 + 0.45 = 0.55**Or** P(at least one red) = 1 - P(green, green)

$$= 1 - (0.9 \times 0.5)$$

$$= 1 - 0.45$$

= 0.55

$$\frac{1}{3} \times 30 = 10$$

- **b** $\frac{1}{3}$ is only a theoretical probability and therefore will not necessarily be accurate in real life.
- **14** 45% of 300 = 135
 - 135 boys and 165 girls.

$$\frac{2}{3}$$
 of 135 = 90

$$\frac{4}{5}$$
 of 165 = 132

Total playing sport = 222

Probability = $\frac{222}{300} = \frac{37}{50} = 0.74$ 15 P(hooking a winning duck) = $\frac{5}{20} = 0.25$ If 100 people play, expected number of winners =

 $0.25 \times 100 = 25$ people.

The game makes $\pounds 1 \times 100$ people = $\pounds 100$.

The money paid out in prizes = 25 winners \times £2 = £50 Profit =£100 - £50 = £50

16 a Milo will have the better estimate as he has surveyed a greater number of people.

b Number of left-handed students =
$$5 + 4 + 7 + 7$$

= 23

Number of right-handed students = 23 + 18 + 51 + 60= 152

P(left-handed) =
$$\frac{23}{23 + 152} = \frac{23}{175}$$

 $\frac{23}{175} \times 2000 = 262.8$

You would expect to find 263 left-handed students in a school with 2000 students.

Statistics

Data and sampling

Stretch it! A random sample could be taken; you could allocate a number to each pupil and randomly generate the numbers to survey. Any method is acceptable as long as each person in the school has an equally likely chance of being chosen. Alternatively a stratified sample could be taken.

1 Primary source: Recording the data by measuring it yourself.

Secondary source: Any sensible source, e.g. the Meteorological Office, local paper etc.

- 2 Qualitative data.
- **3** It is cheaper and quicker than surveying the whole population.
- **4 a** The people working for an animal charity are more likely to be opposed to wearing real fur; every member of the population does not have an equal chance of being chosen.
 - **b** Surveying people in the street, a random telephone survey, any sensible method that ensures that any member of the population has an equal chance of being chosen.

5 a
$$\frac{400}{2000} = \frac{1}{5}$$

b $\frac{1}{5} \times 50 = 10$ bottles

- **6 a** $\frac{3}{200} \times 800\ 000 = 12\ 000$
 - **b** The sample is relatively small, the sample is not a random sample as it is taken on one day in a year.

Frequency tables

1

Number of people on the bus	Frequency
0*-9	4
10-19	12
20-29	3
30-39	1

2	а	Number of courgettes	Frequency
		0	1
		1	0
		2	1
		3	1
		4	9
		5	3
		6	0

- **b** $(0 \times 1) + (1 \times 0) + (2 \times 1) + (3 \times 1) + (4 \times 9) + (5 \times 3) = 56$
- There are gaps between his groups where would he record someone who spent 15.5 hours training?
 His groups do not have the same width.

Bar charts and pictograms

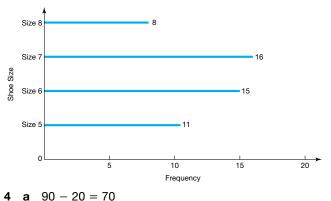
- **1 a** 15 + 4 + 1 = 20 **b** 4 + 1 = 5
 - 4 + 1 = 5 $\frac{5}{20} \times 100 = 25\%$

- **2** a 11 7 = 4
 - **b** Total number of people surveyed = 18 + 18 + 12+ 3 = 51Total number of boys = 11 + 6 + 3 = 20

 $\frac{20}{51} \times 100 = 39.2\%$

c Proportion of boys who played two sports $=\frac{6}{18}=\frac{1}{3}$

Proportion of boys who played three sports $=\frac{3}{12}$ = $\frac{1}{4}$


 $\frac{1}{3} > \frac{1}{4}$ so Jasmine is incorrect, and you can't prove that what she says is true.*

3 50 - (11 + 15) = 24

24 ÷ 3 = 8

Therefore: $2 \times 8 = 16$ size 7 shoes

 $1 \times 8 = 8$ size 8 shoes

b Total number of bikes = 50 + 50 + 20 + 90 = 210 $\frac{50}{210} = \frac{5}{21}$

Pie charts

Stretch it!

Round appropriately - but check the angles sum to 360°

- **2** a $\frac{1.5}{360} \times 240 = 1$ student earned more than £40 000.
 - **b** $\frac{288 + 63}{360} \times 100 = 97.5\%$ of students earned less than £30 000.
- **3 a** 18 + 10 = 28
 - **b** The bar chart, since the frequency is easy to read from the bar chart.

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

Stem and leaf diagrams

1 a 7

- **b** 4.3 4.1 = 0.2 kg
- 2 Age of people using a dentist

- 3 2557
- 4 1226

The leaves were not in ascending order, the spaces between leaves were not regular.

- 3 a Stem and leaf diagram you can see the smallest number of passengers was 3; however, on the bar chart you only know it is between 0 and 9.
 - **b** Both since the shape of the data is preserved in both.

Measures of central tendency: mode

- 1 The other three must be 12.2.
- **2** 1 < *t* ≤ 2
- **3** 17

Measures of central tendency: median

- 1 Ordering the data gives; 2.9, 3.1, 4.3, 6.5, 8.7, 9.2 Median = $\frac{4.3 + 6.5}{2} = 5.4$
- **2** 29 + 28 + 30 + 3 + 10 = 100

 $\frac{(100 + 1)}{2} = 50.5 - \text{median term is between the 50th and}$ 51st terms.

Both these lie in the $2 \le b < 4$ class.

- **3 a** Group A = $\frac{(82 + 85)}{2}$ = 83.5 Group B = $\frac{(75+79)}{2}$ = 77
 - **b** Group A has a higher median, so they did better on the test.

Measures of central tendency: mean

Stretch it! a mode b mean/median c mean/median

1 a Total frequency = 12 + 3 + 5 = 20

Mean =
$$\frac{(2 \times 12) + (6 \times 3) + (10 \times 5)}{20} = 4.6$$

- **b** You are using the midpoint of the groups as an estimate of the actual value for each group.
- $2 \quad \frac{(5 \times 9) + 6}{5 + 1} = 8.5$
- 3 No they could be any pair of numbers which sum to 10.

Range

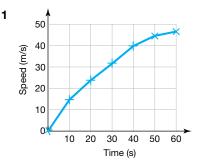
- **1** 9.5 0.7 = 8.8
- **2** Girls = 18 15 = 3Boys = 18 - 16 = 2

- **3** Range for Athlete A = 15.2 13.0 = 2.2Range for Athlete B = 15.2 - 14.3 = 0.9Athlete A has the greatest range.
- 4 45% 10 = 35% or 45% + 30 = 75%

Comparing data using measures of central tendency and range

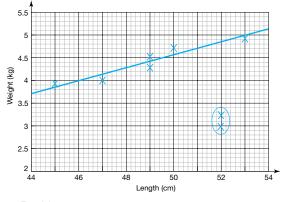
1 a i Mean = $\frac{(32 + 29 + 18 + 41 + 362 + 19)}{6} = \frac{501}{6}$

= 83.5 minutes


Median =
$$\frac{(29+32)}{2}$$
 = 30.5 minutes

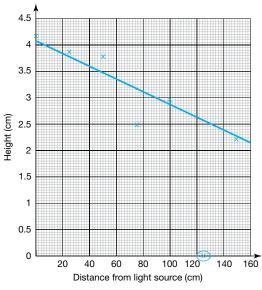
- **b** The extreme value (362 mins) affects the mean but not the median.
- 2 All the data is used to find the mean.
- 3 Either as long as suitably justified:

Car A - although the mean time is higher, it is more consistent in performance since the range is smaller.


- Car B the acceleration is quicker on average.
- 4 a and b The mode or median since the mean will not be a whole number and therefore not meaningful.

Time series graphs

- **2 a** 67°C
 - b Approx. 27°C
 - **c** No, since it is extrapolation (beyond the limits of the data).
- 3 a 17 000 b i April ii August
 - **c** The number of tourists peaks in April and again in December. The low seasons are February/March and July/August/September/October.

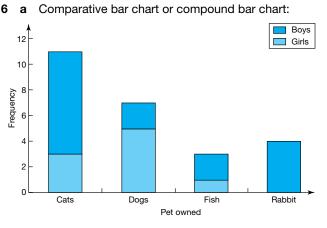

Scatter graphs

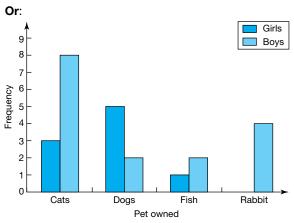
c Positive

^{*}This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

- **d** This will vary according to the line of best fit: approximately 4.7 kg. A range of 4.6kg to 4.8kg would be acceptable.
- e This is beyond the limits of the data and therefore extrapolation.
- 2 a and b

- c The seeds failed to germinate or the seedling died.
- **d** The further the seedling is from the light source the shorter its height.
- **3** No, although the two things correlate one does not cause another. There may be many reasons why the crime rate is high in the area, perhaps there is poverty and inequality causing social tension.


Review it!


1 The sample is too small and he only asked his friends. His data is therefore not representative of the population of TV viewers.

- **b** Total frequency = 11 + 2 + 6 + 1 = 20 $\frac{1}{20} = \frac{5}{100} = 5\%$
- c 360° ÷ 20 = 18°
 Pepperoni = 1 × 18° = 18°
 (or 5% of 360° = 18°)
- **3 a** $\frac{90}{360} = \frac{1}{4}$
 - **b** $45^{\circ} = \frac{1}{8} \text{ of } 360^{\circ}$ Therefore $\frac{1}{8} \text{ of the pie chart represents 60 cars.}$ The whole pie chart = $8 \times 60 = 480 \text{ cars}$ **c** $\left(\frac{105}{360}\right) \times 480 = 140 \text{ cars}$
- **4 a** The number of people doing their grocery shopping online is increasing.
 - **b** Any sensible answer, approximately 75%
 - **c** No it is outside the limits of the data therefore extrapolation.
- **5** a Outside: i Mode = 21 and 31 ii Median = $\frac{(28+29)}{2}$ = 28.5 iii Range = 41 - 20 = 21 Greenhouse: i Mode = 47 ii Median = $\frac{(47+47)}{2}$ = 47 iii Range = 51 - 37 = 14

b The seedlings are taller in the greenhouse since both mode and median is larger, the range of data is smaller in the greenhouse so the height the seedlings reach is more consistent.

c Range = 51 - 20 = 31

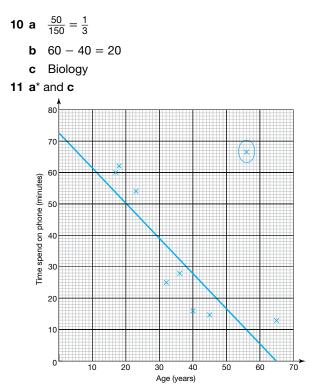
b Total number of students = (3 + 5 + 1 + 0 + 8 + 2 + 2 + 4) = 25

Number of cats = 3 + 8 = 11 $\frac{11}{25}$

7 a Total frequency = 17 + 2 + 32 + 23 + 9 = 83Median value = $\frac{(83 + 1)}{2} = 42$ nd term

> 42nd term is in group 40-59Median class = 40-59

b The youngest person is between 0 and 19, the youngest may be any age in this range and the oldest is between 80 and 99 therefore any age in this range.


8

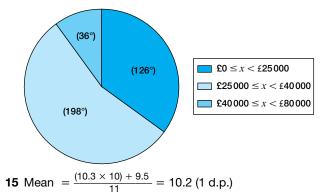
b Size 5

- **c** Mean = $\frac{(3 \times 2) + (4 \times 1) + (5 \times 7) + (6 \times 5) + (7 \times 3)}{2 + 1 + 7 + 5 + 3} = \dot{5}.3$
- d Mode the mean is not an actual shoe size.
- 9 a Time for 800 m (seconds)

	11	22589
	12	019
	13	2 2 5 8 9 0 1 9 1 2
	Key: 1	1 2 = 112 seconds
b	$\frac{4}{10} = \frac{2}{5}$	*

*This answer differs from the one in the Revision Guide due to an error in our first edition. This answer has now been re-checked and corrected.

b Negative


32

- d Approximately 40 minutes: it depends on line of best fit.
- e This is outside the limits of the data and therefore extrapolation.
- **f** As the age of the customer increases the time spent on the phone decreases.

- **12 a** $\frac{(65 \times 3) + (75 \times 5) + (85 \times 2)}{3 + 5 + 2} = 74 \text{ kg}$
 - **b** The midpoint of the class is used as the age of each of the patients rather than the actual age.

13 Male
$$< 50 = \left(\frac{12\ 201}{36579}\right) \times 120 = 40$$

Female $< 50 = \left(\frac{10678}{36579}\right) \times 120 = 35$
Male $\ge 50 = \left(\frac{5699}{36579}\right) \times 120 = 19$
Female $\ge 50 = \left(\frac{8001}{36579}\right) \times 120 = 26$

14 Annual income for surveyed population

16 Mean is 3.8 so the sum of the scores is $3.8 \times 5 = 19$ Mode is 3 so she must roll at least two 3s. Range is 4.

If the range is 4 then the lowest and highest must be either 1 and 5 or 2 and 6.

The numbers are: 2, 3, 3, 5 and 6

Edexcel Foundation Mathematics Exam Practice Book Full worked solutions

1

Number

Factors, multiples and primes

Find the factors that they both share (2 and 3) and multiply together:

 $2\times3=$ 6, so HCF is 6.

2 17, 19, 23 are the only numbers in this range with only 2 factors (1 and the number itself).

 $3 \quad 60 = 20 \times 3$ $= 2 \times 2 \times 5 \times 3$

$$= 2^2 \times 3 \times 5$$

4 Drummer 1 hits her drum at: 6 12 18 24 30 36 42 48 54 60 seconds

Drummer 2 hits his drum at: 8 16 24 32 40 48 56 seconds They hit their drums at the same time twice (two times): after 24 seconds and after 48 seconds.

Ordering integers and decimals

Negative numbers are smaller than zero

 12 is further left on the number line than -8, -1 is larger than -8 (and -12) so it appears next.

Then comes 0, then 2. So the order is:

-12, -8, -1, 0, 2

2 First look at the place value for 10ths: 0.32 and 0.3 have the higher number of 10ths.

Now compare their 100ths. 0.32 has 2 100ths but 0.3 doesn't have any, so it's smaller.

Similarly, 0.23 and 0.203 both have 2 10ths, but 0.23 is bigger than 0.203 because it has 3 100ths while 0.203 only has 3 1000ths.

So the order is:

0.32, 0.3, 0.23, 0.203

- 3 **a** -4 < 0.4 (the negative number is smaller)
 - **b** 4.200 < 4.3 (the larger number has more 10ths)
 - $c \quad -0.404 > -0.44$ (because they are both negative, the one with 'more' 100ths is smaller)
 - d 0.33 < 0.4 (the larger number has more 10ths)

Calculating with negative numbers

1 **a**
$$-7 + -3 = -7 - 3 = -10$$

b $-7 - -3 = -7 + 3 = -4$
c $8 + -5 - -2 = 8 - 5 + 2 = 5$
d $-4 - -6 + -1 = -4 + 6 - 1 = 1$
2 **a** -18
b $-12 \div -3 = 12 \div 3 = 4$
c $-4 \times -2 \times 5 = 4 \times 2 \times 5 = 40$
d $(-24 \div 3) \times 2 = -8 \times 2 = -16$
3 At 10pm, $2 - 4 = -2^{\circ}$ C. At 2am, $-2 - 5 = -7^{\circ}$ C
4 Let *a* = number of correct answers, *b* = number of incorrect answers
 $3a - 2b = -5$ (1)
There are five questions, so $a + b = 5$ and $b = 5 - a$ (2)
Substituting this for *b* in (1): $3a - 2(5 - a) = -5$
 $3a - 10 + 2a = -5$
 $5a = 5$
 $a = 1$
Substituting this in (2):
 $b = 5 - 1$
 $b = 4$
Sally got 1 correct answer and 4 incorrect answers in the test.

Multiplication and division

```
a 357
<u>× 6</u>
2142
```

```
c 092
6)5^{5}5^{4}2
```

92 d

```
\begin{array}{r}
0 5 2 \\
13 \overline{\smash{\big)}}676 \\
-65 \\
0 2 6
\end{array}
```

52

2 a $\underbrace{0.1.2}_{24}$ remainder 12

So 12 boxes are filled.

- **b** 24 × 12 = 20 × 12 + 4 × 12 = 240 + 48 = 288 300 - 288 = 12
- There are 12 books left over.
- **3** 12500 440 = 12060

00335
36)1121060
-108
11216
-108
0180

Each repayment is £335.

4 52 - 6 = 46 weeks $46 \times 26 = 1196$ hours

Calculating with decimals

1 First note the combined number of decimal places in both numbers (2).

Remove the decimal points to do the calculation:

$$\begin{array}{c} 9 \ 2 \\ \times \ 8 \ 3 \\ 2 \ 7 \ 6 \ 0 \ (= \ 92 \times \ 3) \\ 7 \ 3 \ 6 \ 0 \ (= \ 92 \times \ 8 \ 0) \\ 7 \ 6 \ 3 \ 6 \end{array}$$

Now you've got the digits right put the decimal point back, counting in from the right 2 places, to give a number with 2 decimal places: 76.36

	2	2	.5	0
+	1	9	.9	9
	4	2	.4	9
_	4	. 2	.0 .4 .5	.9

2

3

She should get £7.51 change.

	0	3	8	.2	9
6)	2 ²	2 ⁴	9	17	54

4 Kirsty raises $\frac{172.50}{5+1}$

Kirsty raises $\pounds 28.75 \times 5 = 28.75 \times 10 \div 2 = 287.5 \div 2 = 143.7$

 $\begin{array}{c} 0 \ 2 \ 8.7 \ 5 \\ \hline 6 \ 1^{1} 7^{5} 2^{4} 5^{3} 0 \end{array}$

Kirsty raises £143.75

172.50 -<u>143.75</u> 028.75

Flo raises £28.75

Rounding and estimation

- 1 **a** The first non-zero digit is 7, so round the digit after the 8. This is below 5, so the 8 doesn't change. 0.798
 - b Look at the digit in the third decimal place. It is 5 or above (8), so round the 9 up to 10 and the 7 up to 8.
 0.80
- $2 \quad \frac{9.74 \times 4.02}{7.88} \approx \frac{10 \times 4}{8} = 5$
- 3 **a** 40 × 500 = 20000 20000 - 12500 = £7500
 - b Overestimate, because the concert ticket price and number of tickets sold were rounded up, and so the amount of income was estimated more than it really is.

Converting between fractions, decimals and percentages

- a There are $0 \times 10^{\text{ths}}$, $7 \times 100^{\text{ths}}$ and $1 \times 1000^{\text{ths}}$ = 071 × 1000^{\text{ths}} so: $\frac{71}{1000}$
 - **b** $63 \div 100 = 0.63$
 - **c** $0.4 \times 100 = 40\%$
 - **d** $32\% = \frac{32}{100} = \frac{8}{25}$
- **2 a** 5 ÷ 16 = 0.3125
 - **b** To convert a number to a percentage, multiply its decimal value by 100. $0.3125 \times 100 = 31.25\%$
 - $\frac{5}{9} = 0.625, 60\% = 0.6, so 0.65$ is the largest.

Ordering fractions, decimals and percentages

- 1 **a** $\frac{1}{2} = \frac{5}{10} = 0.5$, so
 - $\frac{1}{2} < 0.6$

3

- **b** $\frac{3}{4} = 3 \div 4 = 0.75$, so
 - $\frac{3}{4} > 0.7$
- **c** $\frac{-3}{10} = -0.3$, so
 - $\frac{-3}{10} < 0.2$
- 2 a LCM of 12, 15 and 20 is 60
 - $\frac{5}{12} = \frac{25}{60}$
 - $\frac{7}{15} = \frac{28}{60}$
 - $\frac{9}{20} = \frac{27}{60}$
 - So order from lowest to highest is $\frac{5}{12}$, $\frac{9}{20}$, $\frac{7}{15}$
 - **b** $45\% = \frac{45}{100} = 0.45$ $\frac{1}{25} = \frac{4}{100} = 0.04$ 0.04 < 0.4 < 0.45So order is:
 - ¹/₂₅, 0.4, 45%

- 3 Shop C is cheapest $\left(\frac{2}{5} = 40\%\right)$, then Shop A $\left(\frac{1}{3} = 33.3...\%\right)$, and Shop B offers the least discount at 30%.
- $4 \quad \frac{5}{9} = 0.5$ 38.5% = 0.385 $\frac{3}{10} = 0.3$

So the order is $\frac{5}{9}$, 38.5%, 0.38, $\frac{3}{10}$

Calculating with fractions

- 1 $\frac{1}{5} + \frac{4}{9} = \frac{9}{45} + \frac{20}{45} = \frac{9+20}{45} = \frac{29}{45}$
- **2** $2\frac{3}{4} 2\frac{2}{3} = \frac{11}{4} \frac{8}{3} = \frac{33}{12} \frac{32}{12} = \frac{1}{12}$
- 3 $1\frac{5}{6} \times \frac{2}{7} = \frac{11}{6} \times \frac{2}{7} = \frac{22}{42} = \frac{11}{21}$
- 4 $6 \div \frac{3}{5} = 6 \times \frac{5}{3} = \frac{30}{3} = 10$
- Jo can make 10 necklaces.

Percentages

- 1 $\frac{40}{100} \times 25 = 10$
- 2 $16 \times 0.85 =$ £13.60
- 3 $12450 \times 1.14 = 14193$
- 4 $40 \times 7 \times 3 = \text{\pounds840}$ 840 × 1.2 = \mathcal{\pounds1008}

Order of operations

- 1 $3^2 6 \div (2 + 1) = 9 \frac{6}{3} = 9 2 = 7$
- **2** $2^3 + 3x\sqrt{25} = 8 + (3 \times 5) = 8 + 15 = 23$
- 3 $(1.7 0.12)^2 + \sqrt[3]{4.096} = 4.0964$

Exact solutions

- 1 Area of triangle = $\frac{1}{2}$ × base × vertical height = 0.5 × 0.76 × 0.35 = 0.133
- **2** $\left(1\frac{1}{3}\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9} = 1\frac{7}{9} \text{ m}^2$
- $3 \quad \sqrt{2} \times \sqrt{6} = \sqrt{12} = 2\sqrt{3}$
- 4 Area of a circle $= \pi r^2$ The fraction of the circle shown $= \frac{3}{4}$ The area of the circle shown $= \frac{3}{4} \times \pi r^2$ The radius = 2 cmSo area of shape shown $= \frac{3}{4} \times \pi \times 2^2 = 3\pi \text{ cm}^2$

Indices and roots

- **1 a** $7 \times 7 \times 7 \times 7 = 7^4$
- **b** $\frac{1}{5 \times 5 \times 5} = \frac{1}{5^3} = 5^{-3}$
- **2 a** $2^4 = 2 \times 2 \times 2 \times 2 = 16$
- **b** $10^{-2} = \frac{1}{10^2} = \frac{1}{100}$
- **3** $2^3 = 2 \times 2 \times 2 \times 2 = 8$
 - $3^{-2} = \frac{1}{9}$
 - $\sqrt[3]{27} = 3 \text{ or } -3$
 - $\sqrt{25} = 5 \text{ or } -5$

Assuming the square roots are positive, the answer is: $3^{-2}, \sqrt[3]{27}, \sqrt{25}, 2^3$

If they were negative, the answer would be:

 $\sqrt{25}, \sqrt[3]{27}, 3^{-2}, 2^3$

4 $\frac{9^5}{9^3 \times 9^2} = \frac{9^5}{9^5} = 1$

Standard form

- 1 2750
- **2** 1.5 × 10⁸

3 Move the decimal point three places to the right to give $6.42 \times 10^{\text{-3}}$

4 $(1.4 \times 10^{-5}) \times 20 = (2.8 \times 10^{-5}) \times 2 \times 10 = 2.8 \times 10^{-4} \text{ km}$

Listing strategies

1 259, 295, 529, 592, 925, 952

а	(4-sided spinner					
			0	1	2	3			
		1	1	2	3	4			
	3-sided spinner	2	2	3	4	5			
	spinner	3	3	4	5	6			

b 3

2

3

1			Dice					
			1	2	3	4	5	6
	Coin	Н	H1	H2	H3	H4	H5	H6
	Com	Т	T1	T2	T3	T4	T5	Т6

4 spj; spi; sfj; sfi ; bpj; bpi; bfj; bfi

Algebra

Understanding expressions, equations, formulae and identities

- 1 a identity b equation c expression
- 2 **a** Equation, because it has an equals sign and can be solved.
 - **b** Formula, because it has an equals sign and cannot be solved.
 - ${\boldsymbol c}$ $\;$ Expression, because it has letter terms and no equals sign.
 - **d** Formula, because it has an equals sign and cannot be solved.
- 3 a Any of: 2x + 10 or 10x + 2 or x + 210 or x + 102

b Any of: 2x = 10 or 10x = 2

Simplifying expressions

- 1 8*x*
- 2 **a** $6a \times 8a = (6 \times 8) \times (a \times a) = 48 \times a^2 = 48a^2$ **b** $2p \times 3p \times 5p = (2 \times 3 \times 5) \times (p \times p \times p)$ $= 30 \times p^3 = 30p^3$
- 3 $35yz \div 7z = (35 \div 7) \times (yz \div z) = 5 \times y = 5y$
- 4 $\frac{32uv}{4v} = \frac{32}{4} \times \frac{uv}{v} = 8 \times u = 8u$

Collecting like terms

- 1 **a** 7m + 6n 4m 2n = (7 4)m + (6 2)n = 3m + 4n
- **b** 9q 5r 12q + 3r = (9 12)q + (3 5)r = -3q 2r
- 2 **a** 11a + 5b 10a + 8b = (11 10)a + (5 + 8)b = a + 13b**b** 6c - 4d - 7c + 5d = (6 - 7)c + (5 - 4)d = -c + d
- 3 **a** $9p^3 + p 4p^3 = (9 4)p^3 + p = 5p^3 + p$ **b** $12 - 5x^2 + 3x - 2x^2 = 12 - (5 + 2)x^2 + 3x$ $= -7x^2 + 3x + 12$
- 4 $3\sqrt{5} f 8\sqrt{5} + 2f = (3 8)\sqrt{5} + (2 1)f = -5\sqrt{5} + f$

Using indices

- **a** $p^3 \times p = p^{(3+1)} = p^4$
 - **b** $4y^2 \times 3y^3 = (4 \times 3) \times y^{(2+3)} = 12 \times y^5 = 12y^5$
 - **c** $2a^4b \times 5ab^2 = (2 \times 5) \times a^{(4+1)} \times b^{(1+2)}$
 - $= 10 \times a^5 \times b^3 = 10a^5b^3$

2 a
$$q^{-2} \times q^{-4} = q^{(-2-4)} = q^{-6}$$

b $(u^{-3})^2 = u^{((-3) \times 2)} = u^{-6}$

c
$$x^{-1} \times x = x^{-1} \times x^1 = x^{(-1+1)} = x^0 = 1$$

a $b^4 \div b^3 = b^{(4-3)} = b^1 = b$

3 a
$$b^4 \div b^3 = b^{(4-3)} = b^1 =$$

b $\frac{f}{f^2} = f^{(5-2)} = f^{'3}$

c
$$\frac{xy^2}{x^2y} = x^{(1-2)} \times y^{(3-1)} = x^{-1} \times y^2 = \frac{1}{x} \times y^2 = \frac{y^2}{x}$$

4 Let the first box = x and the second box = y $(xm^3)^y = x^ym^{3y} = 8m^9$ comparing terms, 3y = 9 y = 3Substitute in the y value: $(xm^3)^3 = 8m^9$ $x^3 = 8$ $x = \sqrt[3]{8} = 2$

Therefore, the completed expression is $(2m^3)^3$

Expanding brackets

1

- **a** $4(m + 3) = (4 \times m) + (4 \times 3) = 4m + 12$
- **b** $2(p-1) = (2 \times p) + (2 \times -1) = 2p 2$
- **c** $10(3x 5) = (10 \times 3)x + (10 \times -5) = 30x 50$
- **2 a** 3(m + 2) + 5(m + 1) = 3m + 6 + 5m + 5 = 8m + 11
- **b** 6(x-1) 2(x-4) = 6x 6 2x + 8 = 4x + 2
- 3 **a** $(y+3)(y+7) = y^2 + 7y + 3y + 21 = y^2 + 10y + 21$ **b** $(b+2)(b-4) = b^2 - 4b + 2b - 8 = b^2 - 2b - 8$
 - **c** $(x 4)(x 6) = x^2 6x 4x + 24 = x^2 10x + 24$
- 4 **a** $(q + 1)^2 = (q + 1)(q + 1) = q^2 + q + q + 1 = q^2 + 2q + 1$
 - **b** $(z + 2)^2 = (z + 2)(z + 2) = z^2 + 2z + 2z + 4 = z^2 + 4z + 4$
 - **c** $(c-3)^2 = (c-3)(c-3) = c^2 3c 3c + 9 = c^2 6c + 9$

Factorising

- Divide the expression by the highest common factor (HCF) of both terms to find the bracket, and then multiply the bracket by the HCF to give the full factorisation.
 - **a** $(4x + 8) \div 4 = x + 2$ factorisation: 4(x + 2)
 - **b** $(3d 15) \div 3 = d 5$ factorisation: 3(d - 5)
 - **c** $(8y 12) \div 4 = 2y 3$ factorisation: 4(2y - 3)
- 2 Divide the expression by the common term to find the bracket, and then multiply the bracket by the common term to give the full factorisation.
 - **a** $(q^2 + q) \div q = q + 1$ factorisation: q(q + 1)
 - **b** $(a^2 + 6a) \div a = a + 6$ factorisation: a(a + 6)
 - **c** $(10z^2 + 15z) \div 5z = (2z + 3)$ factorisation: 5z(2z + 3)
- 3 Find which factors of the number term add together to give the coefficient of the *x* term.
 - **a** $12 = 3 \times 4$ 7 = 3 + 4 factorisation: (x + 3)(x + 4)
 - **b** $-16 = (-2) \times 8$ 6 = -2 + 8
 - factorisation: (x 2)(x + 8)
 - **c** $24 = (-6) \times (-4)$ -10 = (-6) + (-4)factorisation: (a - 6)(a - 4)
- 4 **a** Write $y^2 4$ in the form of $a^2 b^2$: $y^2 - 2^2$

Using the formula for the difference of two squares, the factorisation is (1 + 2)(1 - 2)

(y + 2)(y - 2) **b** Write $x^2 - 9$ in the form of $a^2 - b^2$: $x^2 - 3^2$

Using the formula for the difference of two squares, the factorisation is (x + 2)(x - 2)

(x + 3)(x - 3)

c Write $p^2 - 100$ in the form of $a^2 - b^2$: $p^2 - 10^2$ Using the formula for the difference of two squares, the factorisation is (p + 10)(p - 10)

Substituting into expressions

1 $4x + 5y = 4 \times 3 + 5 \times (-2) = 12 - 10 = 2$ 2 $s = ut + \frac{1}{2}at^2$ $= 12 \times 2 + \frac{1}{2} \times 10 \times 2^{2}$ $= 12 \times 2 + \frac{1}{2} \times 40$ = 24 + 20*s* = 44 3 **a** f = 3c - 2(c - d) $= 3 \times 7 - 2 \times (7 - (-5))$ $= 21 - 2 \times (12)$ = 21 - 24f = -3**b** $f = -c(d^2 - 3c)$ $= -7 \times ((-5)^2 - 3 \times 7)$ $= -7 \times (25 - 21)$ $= -7 \times 4$ f = -28**c** $f^2 = 7c - 3d$ $= 7 \times 7 - 3 \times (-5)$ = 49 + 15= 64 $f = \sqrt{64}$ $f = \pm 8$

Writing expressions

- 1 **a** n+3 **b** $(n \times 2) 9 = 2n 9$
- **2 a** x + y **b** $5 \times x = 5x$
- **c** $(12 \times x) + (11 \times y) = 12x + 11y$
- $3 \quad 2 \times 9p + 2(5p + 2) = 18p + 10p + 4 = 28p + 4$
- 4 The area of the rectangle is given by height × length, which is $s \times (5s + 1) = s(5s + 1)$.

Solving linear equations

1 a x = 12 - 5*x* = 7 **b** x = 10 + 3*x* = 13 **c** $x = \frac{20}{4}$ *x* = 5 **d** $x = 6 \times 3$ *x* = 18 **2 a** 2x + 3 = 152x = 12*x* = 6 **b** 3x - 5 = 163x = 21*x* = 7 **c** $\frac{x}{5} + 3 = 8$ $\frac{x}{5} = 5$ *x* = 25 **d** 7 - 2x = 17 = 2x + 16 = 2xx = 3

3 a 3(x + 9) = 303x + 27 = 303x = 3*x* = 1 **b** 5(p-2) = 105p - 10 = 105*p* = 20 *p* = 4 **c** 2(10 - 3m) = 820 - 6m = 812 = 6m*m* = 2 **d** 4(8-2q) = 032 - 8q = 032 = 8q*q* = 4 **4 a** 4x - 6 = x + 93x - 6 = 93x = 15*x* = 5 **b** 2y + 5 = 4y - 35 = 2y - 38 = 2y*y* = 4 **c** 4(2x + 3) = 11x + 38x + 12 = 11x + 39 = 3xx = 3**d** 3(n + 4) = 2(2n + 3)3n + 12 = 4n + 612 = *n* + 6 *n* = 6

Writing linear equations

1 Sum of the angles in a triangle are 180°

$$(2x + 3) + 81 + (3x - 4) = 180$$

 $5x + 80 = 180$

$$5x + 80 = 180$$

$$5x = 100$$

- $x = 20^{\circ}$
- 2 Let Jamie's age = x years. Sophie's age = $\frac{x}{2}$ x + $\frac{x}{2}$ = 18

$$\frac{3x}{2} = 18$$

- $\bar{3x} = 36$
- *x* = 12

Jamie is 12 years old

- 3 Let width = x so length = x + 3Perimeter = 2x + 2(x + 3)46 = 4x + 6x = 10Length = 10cm and width = 13cm
- Area = $10 \times 13 = 130$ cm² 4 Opposite angles are equal so 3x + 10 = 5x - 20 30 = 2x giving $x = 15^{\circ}$ Also 3x + 10 + 7x + 5y = 180 10x + 10 + 5y = 180
 - Now x = 15 so 150 + 10 + 5y = 180Solving this gives $y = 4^{\circ}$

Linear inequalities

1 **a** -1, 0, 1, 2, 3, 4, 5 **b** $-3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$

2 **a**
$$4x > 20$$

 $x > 5$
 $4 5 6 7 8 9 10$
b $3x - 8 \le 13$
 $3x \le 21$
 $x \le 7$
 $4 5 6 7 8 9 10$
c $2(x - 3) < 10$
 $2x - 6 < 10$
 $2x < 16$
 $x < 8$
 $4 5 6 7 8 9 10$
3 **a** $2 \le 3x + 5$
 $-3 \le 3x$
 $-1 \le x$
 $3x + 5 < 11$
 $3x < 6$
 $x < 2$
Hence $-1 \le x < 2$
b $-4 > 5x + 6$
 $-10 < 5x$
 $-2 < x$
 $5x + 6 \le 6$
 $5x \le 0$
 $x \le 0$
Hence $-2 < x \le 0$
 $4 n + n + 3 < 15$
 $2n < 12$
 $n < 6$
 $n = 1, 2, 3, 4, 5$

Formulae

1 **a** $t = (40 \times 2) + 20 = 100$ minutes = 1 hour 40 minutes **b** $t = (40 \times 1.5) + 20 = 80$ minutes = 1 hour 20 minutes The chicken should be put in the oven 1 hour and 20 minutes earlier than 1.30 pm, which is a time of 12.10 pm.

2 a
$$C = l + kn$$

b $C = 90 + 6.5 \times 3$ $C = \pounds 109.50$

3 a
$$p = \frac{qs}{3}$$

 $3p = qs$

$$q = \frac{3p}{s}$$

b
$$p = \frac{q}{r} + t$$

 $p - t = \frac{q}{r}$

$$q = rp - rt = r(p - t)$$

c
$$p = 3(q + r)$$

$$\frac{p}{3} = q + r q = \frac{p}{3} - r = \frac{p - r}{3}$$

d
$$p = \sqrt{2q}$$

 $p^2 = 2q$

$$q = \frac{p^2}{2}$$

Linear sequences

1 **a** The term in position 1 is $1 \times 5 + 1 = 6$ The term in position 2 is $2 \times 5 + 1 = 11$

- 31

The term in position 3 is $3 \times 5 + 1 = 16$ The term in position 4 is $4 \times 5 + 1 = 21$

- **b** The term in position 50 is $50 \times 5 + 1 = 251$
- 2 a Each pattern has 2 more dots than the last, so pattern 7 will have 8 more dots than pattern 3. Pattern 7 will have 19 dots.
 - **b** Rachel is wrong. Each pattern adds one triangle, so in pattern 4 there will be one more triangle than in pattern 3, giving 6 triangles. The rule for the number of triangles is n + 2.
- 3 **a** Common difference = 11, so 11n is in the sequence. When n = 1:
 - 11n = 11, but the 1st term is 3.

3 = 11n - 8

So the expression for the sequence is 11n - 8

- b Assume 100 is in the sequence. Then:
 - 11n 8 = 100
 - 11*n* = 108

 $n = 108 \div 11 = 9$ remainder 9

But n must be a whole number, and it is not; so 100 is not in this sequence.

Non-linear sequences

- **1 a** Rule is multiply by 2.
 - $8 \times 2 = 16$ $16 \times 2 = 32$
 - So terms are 16, 32
 - **b** Rule is divide by 10.
 - $1 \div 10 = 0.1$
 - $0.1 \div 10 = 0.01$
 - So terms are 0.1, 0.01
 - **c** Rule is multiply by -2.
 - $-12 \times -2 = 24$
 - $24 \times -2 = -48$
 - So terms are 24, -48
 - **d** They involve multiplying and dividing, not adding and subtracting, so they are geometric.
- **2 a** Next term = 6 + 9 = 15
 - **b** 5^{th} term = 6 + 9 = 15
 - $6^{\text{th}} \text{ term} = 9 + 15 = 24$
 - $7^{\text{th}} \text{ term} = 15 + 24 = 39$
 - $8^{\text{th}} \text{ term} = 24 + 39 = 63$
 - 9^{th} term = 39 + 63 = 102

The 9th term is the first term in the sequence over 100

3 a

4

Day	Mon	Tue	Wed	Thu	Fri
Number of ladybirds	2	8 (= 2 × 4)	32 (= 8×4)	32 × 4 = 128	128 × 4 = 512

The gardener is correct. There will be more than 500 ladybirds.

b Saturday: $512 \times 4 = 2048$

a First term: $\frac{1}{2} \times 1^2 = \frac{1}{2}$ Second term: $\frac{1}{2} \times 2^2 = 2$ Third term: $\frac{1}{2} \times 3^2 = \frac{9}{2} = 4\frac{1}{2}$

b If 32 is in the sequence, then:

$$\frac{1}{2}n^2 = 32$$

 $n^2 = 64$

This gives n as a whole number, 8, so 32 is the 8th term in the sequence.

Show that...

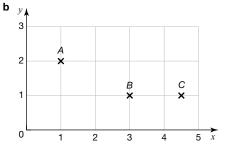
- 1 LHS = 2x + 1; RHS = 2x + 1; LHS = RHS. Therefore, $2(x + \frac{1}{2}) \equiv x + x + 1$
- **2** LHS = $x^2 25 + 9 = x^2 16$; RHS = $x^2 16$
- 3 Let the three consecutive numbers be n, n + 1 and n + 2. n + n + 1 + n + 2 = 3n + 3 = 3(n+1). Therefore, the sum of three consecutive numbers is a multiple of 3.
- 4 a Width of pond = x y + x + x + x y = 4x 2yLength of pond = 4x
 - Perimeter = 4x 2y + 4x 2y + 4x + 4x = 16x 4y **b** Yes Sanjit is correct, because 16x - 4y = 4(4x - y), showing that when *x* and *y* are whole numbers, the perimeter is always a multiple of 4.

Functions

2

3

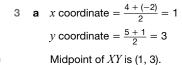
b


- 1 **a** when x = 3, $y = 3 \times 4 1 = 11$
- **b** when y = 23, 4x 1 = 23, therefore $x = (23 + 1) \div 4 = 6$ **c** To get *y* you multiply *x* by 4 and subtract 1, so y = 4x - 1

x	Operations	у
-2	(-2) × 2 + 3	-1
0	0 × 2 + 3	3
3	(9 – 3) ÷ 2	9

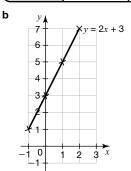
x	Operations	у
-2	(-2) ÷ 2 + 1	0
1	(1) ÷ 2 + 1	1 <u>1</u> 2
8	(5 – 1) × 2	5

Coordinates and midpoints


1 **a** 1 along the *x*-axis and 2 up the *y*-axis: (1, 2)

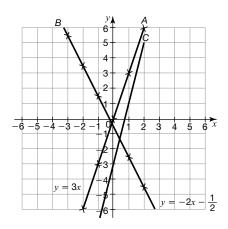
- **c** $4\frac{1}{2}$ along the *x*-axis and 1 up the *y*-axis: $(4\frac{1}{2}, 1)$
- **2 a** 1 along the *x*-axis and -4 'up' the *y*-axis: (1, -4)

S = (6, -2) to make a parallelogram



- **b** Midpoint of $XZ = \left(\frac{4+4}{2}, \frac{5+(-4)}{2}\right) = (4, \frac{1}{2})$
- **c** Midpoint of $YZ = \left(\frac{(-2)+4}{2}, \frac{1+(-4)}{2}\right) = (1, -1\frac{1}{2})$

Straight line graphs

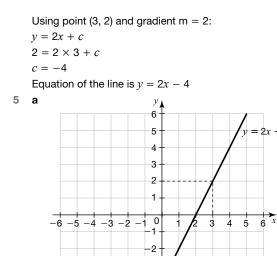

1 a For y = 2x + 3

x	-1	0	1	2
Operations	$2 \times (-4) + 3$	$\mathcal{L} \times (0) + 3$	$2 \times (1) + 3$	$\mathcal{Q} \times (\mathcal{Q}) + 3$
У	1	3	5	7

2 a For y = 3x

x	-2	-1	0	1	2
Operations	$3 \times (-2)$	$3 \times (-1)$	3 × (0)	$3 \times (4)$	$3 \times (2)$
у	-6	-3	0	3	6

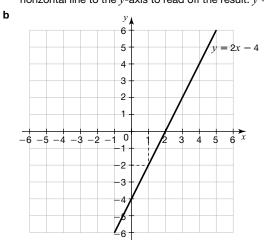
b Rearrange the equation to give $y = -2x - \frac{1}{2}$

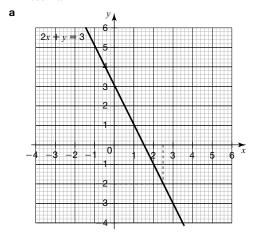

x	Operations	у
-3	$-2 \times (-3) - \frac{1}{2}$	5 <u>1</u>
-2	$-2 \times (-2) - \frac{1}{2}$	3 ¹ / ₂
-1	$-2 \times (-1) - \frac{1}{2}$	$1\frac{1}{2}$
0	$-2 \times (0) -\frac{1}{2}$	$-\frac{1}{2}$
1	$-2 \times (1) - \frac{1}{2}$	$-2\frac{1}{2}$
2	$-2 \times (2) -\frac{1}{2}$	$-4\frac{1}{2}$

c Line C goes through points (0, -3), (1, 1) and (2, 5) The *y* intercept is -3.

The gradient is $\frac{\text{difference in } y \text{ coordinates}}{\text{difference in } x \text{ coordinates}} = \frac{5-1}{2-1} = 4$ The equation of line C is y = 4x - 3.

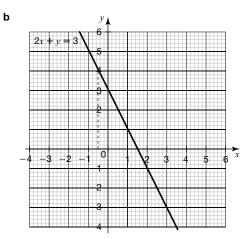
- **a** B and C, because they have the same gradient of 2.
- **b** A and B, because they both have a *y*-intercept at (0, 1).
- 4 The gradient is $\frac{2-(-6)}{3-(-1)} = \frac{8}{4} = 2$


3

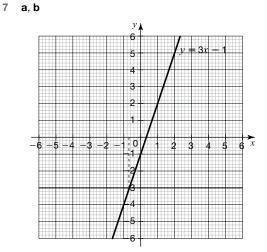

-3

-6

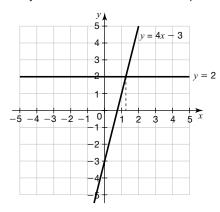
Draw a vertical line up from x = 3 to the graph, and then a horizontal line to the *y*-axis to read off the result: y = 2.



Draw a horizontal line across from y = -2 to the graph, and then a vertical line up to the *x*-axis to read off the result: x = 1.


6

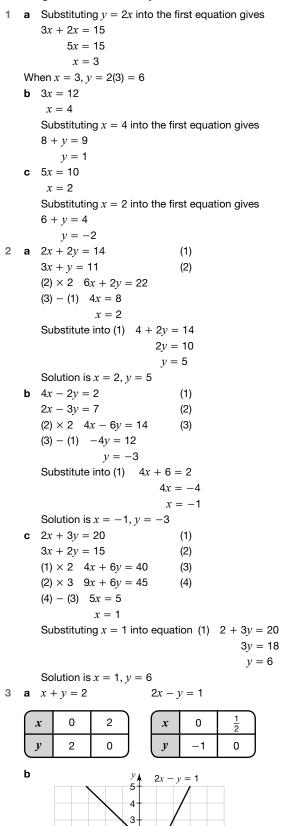
Draw a horizontal line across from y = -2 to the graph, and then a vertical line up to the *x*-axis to read off the result: x = 2.5.



Draw a vertical line up from x = -0.5 to the graph, and then a vertical line across to the *y*-axis to read off the result: y = 4.

c Reading up from x = -1.2 and then across to *y* axis gives y = 0.6. Any value from 0.6 to 0.75 is acceptable.

b Where the graphs cross, draw a vertical line up to the *x*-axis. It meets the axis two thirds of the way between x = -1 and x = 0, so the solution is approximately x = -0.67. Any value from -0.6 to -0.7 is acceptable.



8

Compare the equations y = 4x - 3 and 4x - 3 = 2. y has been replaced with 2, so add line y = 2 to the graph. The intersection point of the two graphs gives the solution to the equation 4x - 3 = 2

x = 1.25. Any answer between 1.2 and 1.3 is acceptable.

Solving simultaneous equations

1

0

3

5

-5 -4 -3 -2 -1

x = 1, y = 1

2

From the intersection of the two lines, x = 1, y = 1.

5

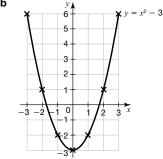
x + y = 2

4

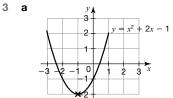
С *У*▲ 5 x + 2y = 44 3 = 2, y = 31 0 -4 -3 -2 -2 3 4 5 3 2x-4

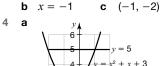
From the intersection of the two lines, x = 2, y = 3.

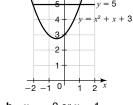
5

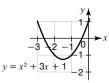

Quadratic graphs

- 1 a C and D they are straight lines so they are linear.
 - **b** E it is quadratic, with a positive multiplier for x^2 , and is symmetrical about the origin.
 - **c** A it is quadratic, with a negative multiplier for x^2 , and is symmetrical about the origin.
 - **d** D the *x* coordinates are all different, but all the *y* coordinates on this line are 1.
 - B it is the same as E except that it has been moved 1 unit up the *y*-axis.


а	x	-3	-2	-1	0	1	2	3
	у	6	1	-2	-3	-2	1	6


b


2



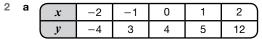
b
$$x = -2$$
 or $x = 1$
5 $x = -3$ or $x = 1$
6 a

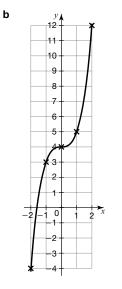
а		

x	-3	-2	-1	0
$x^2 + 3x + 1$	(−3)² + 3×(−3) + 1	$(-2)^2 + 3 \times (-2) + 1$	$(-1)^2 + 3 \times (-1) + 1$	(0) ² + 3×(0) + 1
у	1	-1	-1	1

- **b** Compare the equations $y = x^2 + 3x + 1$ and $x^2 + 3x + 1$ = -1. *y* has been replaced with -1, so the solutions to the equation $x^2 + 3x + 1 = -1$ are where y = -1. x = -2 and x = -1
- **c** Compare the equations $y = x^2 + 3x + 1$ and $x^2 + 3x + 1 = 0$. *y* has been replaced with 0, so the solutions to the equation $x^2 + 3x + 1 = 0$ are where the graph crosses the *x*-axis.

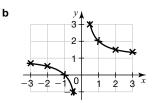
x = -2.6 and x = -0.38 (any answer close to -0.4 is acceptable)

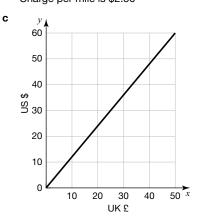

Solving quadratic equations


1	а	x(x+6)=0	3	а	(x + 3)(x + 2) = 0
		x = 0 or -6			x = -2 or -3
	b	y(y - 11) = 0		b	(x + 5)(x - 2) = 0
		<i>y</i> = 0 or 11			x = -5 or 2
	с	3d(d-3)=0		с	(x-7)(x-2)=0
		d = 0 or 3			<i>x</i> = 2 or 7
2	а	(x + 4)(x - 4) = 0	4	а	0=x(x-3)
		x = 4 or -4			<i>x</i> = 0 or 3
	b	(a + 9)(a - 9) = 0		b	0 = (x - 5)(x + 5)
		a = 9 or -9			<i>x</i> = 5 or −5
	с	(z-10)(z+10)=0		С	0 = (x + 6)(x - 3)
		z = 10 or -10			x = -6 or 3

Cubic and reciprocal graphs

1

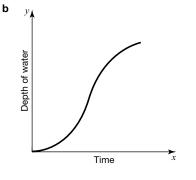

- A, C and D they are not continuous curves with two turning points (s-shaped curves).
 - ${\bf b} \ \ {\bf B}-{\bf i}t$ has two turning points and has rotational symmetry about the origin.
 - **c** E it has two turning points and is a reflection of B, raised up one unit on the *y*-axis.
 - d D this is the form for a reciprocal graph.


3	а	cubic	b	(0, -8)	С	(2, 0)

4 a	x	-3	-2	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1	2	3	
	У	$\frac{2}{3}$	$\frac{1}{2}$	0	-1	3	2	$1\frac{1}{2}$	$1\frac{1}{3}$	

Drawing and interpreting real-life graphs

- 1 **a** The initial charge is the value at 0 miles, where the graph cuts the *y*-axis (the *y*-intercept): \$3.
 - **b** The charge per mile is given by the gradient of the graph. Gradient = $\frac{\text{difference in } y \text{ coordinates}}{\text{difference in } x \text{ coordinates}} = \frac{23 - 3}{8 - 0} = \frac{20}{8} = 2.5$ Charge per mile is \$2.50


- d From the conversion graph, £15 = \$18.
 From the graph of the cost of a taxi in New York, \$18 allows you to travel 6 miles.
- 2 a You can read this from the highest point of the graph: 16 m.b Read from the highest point down to the value on the horizontal axis: 4 seconds.
 - **c** This is when the ball reaches 0 height for the second time: 8 seconds.
 - **d** Read from 12 on the vertical axis across to the curve: 2 seconds and 6 seconds.
- 3 a This is the highest value on the vertical axis: 10 m/s.
 - **b** The cyclist is travelling at a constant speed of 10 m/s.
 - **c** The cyclist is decelerating, so it will be a negative value. Acceleration $= \frac{-10}{20} = -\frac{1}{2}$ m/s²
 - **d** The speed returns to 0: the cyclist stops.
- 4 **a** Assuming that water pours into the container at a constant rate,

A: depth goes up increasingly slowly as the container widens, so 2.

B: depth rises steadily and fairly slowly in a broad container of consistent diameter, so 4.

C: depth rises quickly at first, then more slowly as the container widens, then more quickly as it gets narrow towards the top, so 3.

D: depth rises steadily and quickly in a narrow container of consistent diameter, so 1.

Ratio, proportion and rates of change

Units of measure

- 1 **a** $4(m) \times 100 = 400 \, \text{cm}$
 - **b** 500 (g) \div 1000 = 5 kg
 - **c** $1.5 (l) \times 1000 = 1500 \,\mathrm{m}$
 - **d** 8250 (m) \div 1000 = 8.25 km
- 2 6 (litres) × 1000 = 6000 ml 6000 - 3500 = 2500
 - Sally had **2500 ml** of lemonade left.
- a Luke: 240 seconds; Adam: 3 × 60 + 47 = 227 seconds. Adam arrived first.
 or Luke: 240 ÷ 60 = 4 minutes; Adam: 3 minutes
 - 47 seconds. Adam arrived first.
 - b 4 minutes 3 minutes 47 seconds = 13 seconds.
 Adam waited 13 seconds for Luke to arrive at school.

Ratio

- 1 12 stories and 8 colouring Ratio of story: colouring = 12 : 8 = 3 : 2
- 2 Total parts = 1 + 2 = 3 1 part = $\frac{15}{3}$ = 5 Spent = 2 × 5 = £10
- 3 Total parts = 1 + 2 + 3 = 6 1 part = $\frac{60}{6}$ = 10 Amount given to charity = 3 × 10 = £30
- 4 Ratio of blue to yellow required is 3 : 7.
 - There are 3 + 7 = 10 parts. He needs to make 5 litres. 10 parts = 5000 ml

1 part = 500 ml

Phil needs $3 \times 500 \text{ ml} = 1500 \text{ ml} = 1.5$ litres of blue paint. He has 2 litres of blue paint.

Phil needs 7 \times 500 ml = 3500 ml = 3.5 litres of yellow paint. He has 3 litres of yellow paint.

Phil has enough blue paint, but does not have enough yellow paint.

Scale diagrams and maps

1 1 cm on the map is **10000 cm** in real life.

This means 1 cm on the map is **100 m** in real life.

- 1 cm on the map represents 50 m in real life.
 3 × 50 m = 150 m, so the bus stop is 3 cm from the village shop on the map.
- Measure the distance between the trees on the diagram = 5 cm
 1 cm on the diagram represents 4 m in real life.
 5 × 4 = 20

The trees are 20 m apart.

4 A scale of 1 : 400 means 1 cm on the model represents 4 m (= 400 cm) in real life.

 $96 \div 4 = 24$

The scale mode is **24 cm** tall.

Fractions, percentages and proportion

- 1 1 + 3 = 4 parts so Bess receives $\frac{3}{4}$
- **2 a** 1:3:6
 - **b** 1 + 3 + 6 = 10 items in the basket

Fruit =
$$\frac{3}{10}$$

Tins
$$=\frac{6}{10}=60\%$$

$$3 \quad \frac{50}{4000} = \frac{1}{80}$$

С

4 Total parts = 3 + 8 + 14 = 25 $\frac{8}{25} = \frac{32}{100} = 32\%$

Direct proportion

- **a** One ticket costs $\pounds 80 \div 5 = \pounds 16$
- **b** Nine tickets cost $9 \times \pounds 16 = \pounds 144$
- 2 **a** Read up from 6 packs on the horizontal axis, to the line, then across to the vertical axis to find the cost: £1.20
 - **b** There are 10 pencils in a pack, so 1 pencil is 0.1 of a pack. Reading off the graph using this value, the price is 2p.
 - **c** It is a straight-line graph; the graph passes through the origin (0, 0).
- 3 a Sally needs to make $28 \div 4 = 7$ lots of the recipe. She will need $1 \times 7 = 7$ teaspoons of turmeric, $2 \times 7 = 14$ teaspoons of chilli powder and $2\frac{1}{2} \times 7 = 17\frac{1}{2}$ teaspoons of cumin.
 - **b** Sally has 75 g of chilli powder. That is $75 \div 3 = 25$ teaspoons.

Sally needs 14 teaspoons to make the curry for her class. She does have enough.

Inverse proportion

- 1 **a** Start from 5 on the *x*-axis, read up to the graph, then left to the scale on the *y*-axis.
 - 5 winners will each get **£400**.
 - **b** Start from 200 on the *y*-axis, read right to the graph, then down to the scale on the *x*-axis. 10 winners each get £200, so there are **9** other winners.
 - **c** Multiply the number of winners by the amount each one gets to find the total prize money. e.g. $5 \times \pounds 400 = \pounds 2000$.
 - d Compare 2 points on the graph. (Use your answers to parts a and b.) If the number of winners goes up, the prize money they each receive goes down. The prize money and the number of winners are in inverse proportion.
- 2 **a** The total time needed to decorate the room is $3 \times 2 = 6$ hours.
 - **b** 6 hours \div 12 people = 0.5 hours = **30 minutes**.
- 3 The printer can print 240 ÷ 4 = 60 pages per minute. 600 ÷ 60 = 10, so it would take **10 minutes** to print the larger document.

Working with percentages

- 1 125 75 = 50
 - $\frac{50}{125} \times 100 = 40\%$
- **a** Amount of increase = $24 15 = \pounds 9$ million $\frac{9}{15} \times 100 = 60\%$ increase in sales for Company X
 - b 125% = £35 million
 35 ÷ 125 × 100 = £28 million sales in 2006.
- 3 **a** $\frac{2}{100} \times 265 = 5.30$ and $3 \times 5.30 = 15.90$
 - 15.90 + 265 =£280.90
 - **b** $265 \times (1.02)^3 =$ £281.22

Compound units

- 1 $\frac{3 \text{ km}}{\text{minute}} = \frac{3000 \text{ m}}{\text{minute}} = \frac{3000 \text{ m}}{60 \text{ seconds}} = 50 \text{ m/s}$
- **2** $20 \div 5 = 4$ minutes to fill the tank.
- 3 Pressure = $\frac{300}{0.05}$ = 6000 Newtons/m²
- 4 On Saturday Sami drove $4 \times 50 = 200$ miles; on Sunday Sami drove $356 \div 8 \times 5 = 222.5$ miles. Sami drove further on Sunday.

Geometry and measures

Measuring and drawing angles

a 123°

1

- **b** 42°
- **c** 331°
- 0 331
- 2 _____x

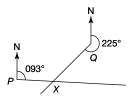
3 a 100°, 120°, 140°, 160°

b First angle + second angle = 87° . This means both angles are less than 87° , and so they both must be acute.

Using the properties of angles

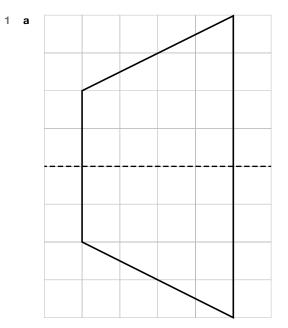
- **a** Angle $ACB = 52^{\circ}$ (Angles in a triangle add up to 180°) $x = 128^{\circ}$ (Angles on a straight line add up to 180°)
 - **b** Angle $ADC = 86^{\circ}$ (Angles in a quadrilateral add up to 360°) $x = 94^{\circ}$ (Angles on a straight line add up to 180°)
- 2 **a** Angle $BED = 39^{\circ}$ (Alternate angles are equal) Angle $BDE = 39^{\circ}$ (Base angles in an isosceles triangle are equal)
 - $x = 102^{\circ}$ (Angles in a triangle add up to 180°)
 - **b** Angle $DCF = 98^{\circ}$ (Vertically opposite angles are equal) $x = 98^{\circ}$ (Corresponding angles are equal)
- 3 Angle $CFG = 62^{\circ}$ (Co-interior angles add up to 180°) $x = 66^{\circ}$ (Angles on a straight line add up to 180°)
- 4 $x + 40 + 3x + 5x 40 = 180^{\circ}$ $9x = 180^{\circ}$ $x = 20^{\circ}$ Apple BAC = x + 40 = 20 + 40

Angle $BAC = x + 40 = 20 + 40 = 60^{\circ}$ Angle $ACB = 3x = 3 \times 20 = 60^{\circ}$ Angle $ABC = 5x - 40 = 5 \times 20 - 40 = 60^{\circ}$ Triangle ABC has equal angles of 60°. Therefore, it is an equilateral triangle.

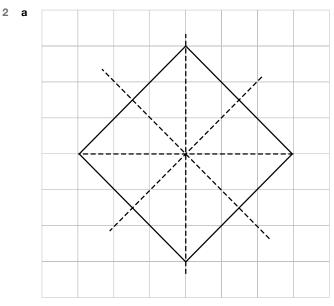

Using the properties of polygons

- **1 a** $180^{\circ} \times (6-2) = 720^{\circ}$
 - **b** $720^{\circ} \div 6 = 120^{\circ}$
 - **c** $180^{\circ} 120^{\circ} = 60^{\circ} \text{ or } 360^{\circ} \div 6 = 60^{\circ}$
- 2 **a** It is an octagon because it has eight sides.
 - **b** All angles are equal; all sides are equal.
 - c $180^{\circ} \times (8-2) = 1080^{\circ}$ $1080^{\circ} \div 8 = 135^{\circ}$ or $180^{\circ} - (360^{\circ} \div 8) = 135^{\circ}$
- 3 exterior angle = $180^{\circ} 144^{\circ} = 36^{\circ}$ number of sides = $360 \div 36 = 10$ Therefore it is a decagon.

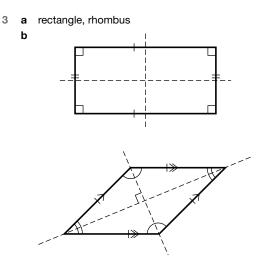
Using bearings


- **a** This is the angle measured clockwise from North at A: 065°.
 - **b** $180 138 = 42^{\circ}$ This is the acute angle at *C*. Bearing of *B* from $C = 360 - 42^{\circ} = 318^{\circ}$
 - **c** $180 65 = 115^{\circ}$ This is the angle between the north line at *B* and *AB*, measured anticlockwise. Bearing of *A* from $B = 360 - 115 = 245^{\circ}$
- 2 To find a reciprocal bearing, subtract 180 from the original bearing (or add 180 to it). The bearing of *O* from $X = 276 - 180 = 096^{\circ}$

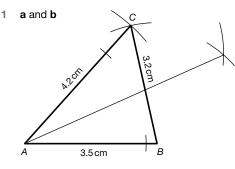
3 **a** Draw a North line at *P*, then join *P* to *Q* and measure the angle between the North line and this line: 060° (any value 058° to 062° accepted).

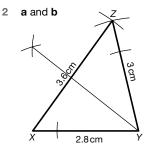


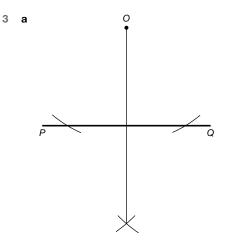
Properties of 2D shapes


b

- **b** trapezium
- ${\boldsymbol{\mathsf{c}}} \quad \text{one pair of parallel sides}$

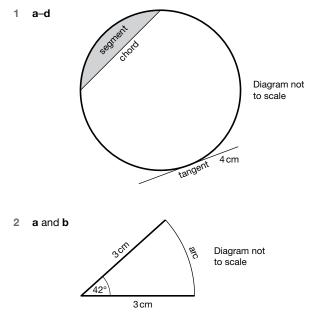

- **b** 4
- c square
- d Two from: all sides equal in length; all angles are 90°; diagonals are equal; diagonals bisect each other at 90°

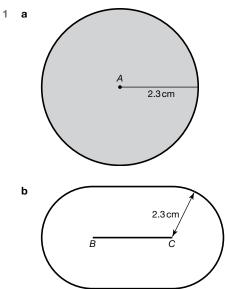


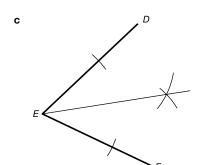

Congruent shapes

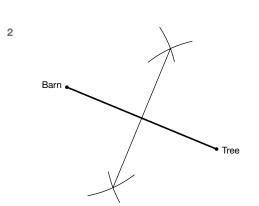
- 1 D and F are exactly the same as A they are the same size and shape (it doesn't matter that they are rotated). E is similar to A, not congruent – it is smaller.
- 2 If the triangles are congruent, all three angles must be the same in both. You know that two of the angles are 35° and 82° , so $x = 180 35 82 = 63^{\circ}$.
- 3 a Identify what values match: SAS (side, angle, side two sides and the angle between them).
 - **b** Identify what values match: ASA (angle, side angle two angles and a corresponding side).
- 4 They have the same angles, and they **look** congruent, but we cannot be sure of this. We are not given measurements to prove the corresponding sides are the same length – one triangle could be a slight enlargement of the other. So the answer is no.

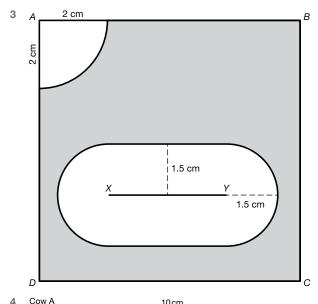
Constructions

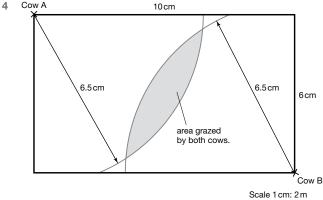



b Distance on the diagram = 2.5 cm $2.5 \times 100 = 250 \text{ cm}$ in real life = 2.5 m


Drawing circles and parts of circles



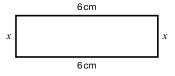

3 No, Donald is not correct. A segment of a circle is the area enclosed by a chord and an arc; a sector of a circle is the area enclosed by two radii and the arc between them.



Perimeter

- 1 A hexagon has 6 sides so perimeter = $6 \times 9 = 54$ cm
- 2 Missing vertical length = 20 5 5 4 = 6 mm Missing horizontal lengths are all equal = 25 - 13 = 12 mm each

Perimeter = 20 + 25 + 6 + 12 + 4 + 12 + 5 + 12 + 5 + 13= 114 mm


 $114 \div 10 = 11.4 \, \text{cm}$

3 Perimeter of cushion = $\frac{1}{2} \times 2 \times \pi \times 24 + 30 + 48 + 30$ = 183 cm (to nearest cm)

= 1.83 m. So no, Greta does not have enough lace.

Area

- **1 a** Area = $12 \times 6 = 72 \, \text{cm}^2$
 - **b** Area $= \frac{1}{2} \times (3 + 8) \times 4 = 22 \,\mathrm{cm}^2$
 - c Area of rectangle = $2 \times 10 = 20 \text{ cm}^2$ Area of trapezium = $\frac{1}{2}(a + b)h = \frac{1}{2}(2.5 + 10)10$ = 62.5 cm^2
 - Area of shape = $20 + 62.5 = 82.5 \,\text{cm}^2$
- 2 First draw a diagram. Two sides are equal, and are 6 cm. The two other sides are equal, and are *x* cm.

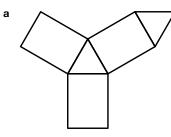
$$x + x + 6 + 6 = 16$$

$$2x + 12 = 16$$

$$x = \frac{16 - 12}{2} = 2.$$

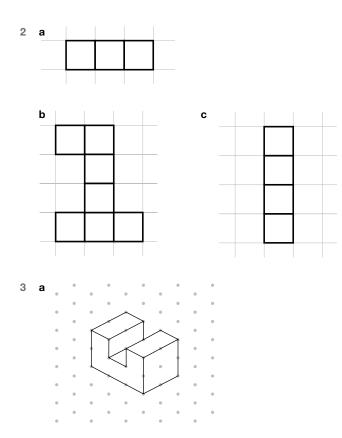
Area = $6 \times 2 = 12 \text{ cm}^2$

3 Radius of circle = 3.5 cm Area of circle = $\pi r^2 = \pi \times 3.5^2 = 38.48 \text{ cm}^2$ Area of square = 49 cm² Area of shaded part = $\frac{49 - 38.48}{4} = 2.63 \text{ cm}^2$


Sectors

- **1 a** $\frac{120}{360} = \frac{1}{3}$
 - **b** Area $=\frac{1}{3} \times \pi \times 3^2 = 3\pi \text{ cm}^2$
- 2 **a** Area = $\frac{1}{4} \times \pi \times 2.8^2 = 6.2 \text{ cm}^2$ (1 d.p.) **b** Perimeter = $2.8 + 2.8 + \frac{1}{4} \times 2 \times \pi \times 2.8$ = 10.0 cm (1 d.p.)
- 3 **a** Area = $\frac{40}{360} \times \pi \times 5^2 = 8.73 \,\text{cm}^2$ (2 d.p.)

b Arc
$$AB = \frac{40}{360} \times 2 \times \pi \times 5 = 3.49$$
 cm (2 d.p.)


3D shapes

1

b triangular prism

С	Number of faces	Number of edges	Number of vertices
	5	9	6

3 **b** The front elevation shows 5 cubes and the side shows that the shape is 2 cubes deep. $5 \times 2 = 10$, so 10 cubes make up the shape.

Volume

- 1 The front elevation shows 5 cubes and the side shows that the shape is 4 cubes deep.Volume = $5 \times 4 = 20 \text{ cm}^3$
- 2 **a** Volume = area of cross-section × length = $\pi \times 5^2 \times 12$ = 942 cm³ (to 3 s.f.)

b Volume = $\frac{1}{3}$ × area of cross-section × length = $\frac{1}{3}$ × π × 7² × 15 = 770 cm³ (to nearest cm)

3 Volume = $\frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{2}{3} \times \pi \times 8^3 = 1072.33 \,\text{cm}^3$ (to 2 d.p.)

4 Volume of tank = $40 \times 40 \times 60 = 96000 \text{ cm}^3$ Volume of water in tank, 80% full = 0.8×96000 = 76800 cm^3

Height of water in pond (1st fill) = $76800 \div (80 \times 60) = 16 \text{ cm}$ Height of water in pond (2nd fill) = $16 \times 2 = 32 \text{ cm}$ Height of water in pond (3rd fill) = $16 \times 3 = 48 \text{ cm}$ Three tanks of water are needed to fill the pond. Alternative method: divide volume of pond by volume of water in tank.

$$\frac{80 \times 60 \times 48}{76800} = 3$$

Surface area

1

a 6 faces

b Surface area = $60 + 60 + 5 + 5 + 3 + 3 = 136 \text{ cm}^2$ 2 surface area = area of triangular side $\times 4$ + area of square base

$$= \left(\frac{1}{2} \times 6 \times 5\right) \times 4 + 6^{2}$$
$$= (15 \times 4) + 36$$

Surface area = 96 cm^2

- 3 **a** Surface area of a sphere = $4\pi r^2 = 4 \times \pi \times 14^2$ = 2463.01 cm² (to 2 d.p.)
 - **b** Surface area of a cone = $\pi rl + \pi r^2 = \pi \times 6 \times 10 + \pi \times 6^2$ = 301.59 cm² (to 2 d.p.)
- 4 Area of cylinder = $2\pi rh = 2\pi \times 6 \times 1.5 = 56.55 \text{ cm}^2$ Area of circular base = $\pi r^2 = \pi \times 6^2 = 113.10 \text{ cm}^2$ Area of curved surface area of cone = $\pi rl = \pi \times 6 \times 11.5$ = 216.77 cm²
 - Total surface area = $56.55 + 113.10 + 216.77 = 386.42 \text{ cm}^2$ (to 2 d.p.)

Using Pythagoras' theorem

- $x^{2} = 3^{2} + 4^{2}$ = 9 + 16 = 25 $x = \sqrt{25}$ = 5 cm $15^{2} = y^{2} + 12^{2}$ $225 = y^{2} + 144$ $81 = y^{2}$
 - $v = \sqrt{81}$
 - = 9cm
- 2 $6^2 = 4.5^2 + w^2$

$$36 = 20.25 + w^2$$

$$w = \sqrt{15.75}$$

Area =
$$l \times w = 4.5 \times 3.97 = 17.9 \,\mathrm{cm^2}$$

$$AB^{2} = 2^{2} + 4^{2}$$
$$= 4 + 16$$
$$= 20$$
$$AB = \sqrt{20}$$
$$= \sqrt{4 \times 5}$$

3

$$= \sqrt{4} \times 3$$

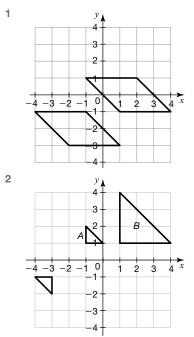
 $= 2\sqrt{5} \text{ cm}$

4 Square of diagonal of doorway = $70^2 + 190^2 = 41\,000$ Diagonal of doorway = $\sqrt{41\,000}$ = 202.48 cm = 2.0248 m = 2.02 m (2 d.p.) Yes, the artwork will fit through the diagonal of the doorway.

Trigonometry

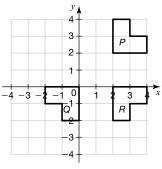
1
$$\tan x = \frac{8}{13}$$

 $x = 31.6^{\circ}$
2 $\cos 42 = \frac{17}{AC}$
 $AC = \frac{17}{\cos 42} = 22.9 \text{ cm}$
3 $\sin 49 = \frac{h}{6}$
 $h = 6 \sin 49$
 $= 4.53 \text{ m}$


Exact trigonometric values

1 **a** $\tan x = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{1} = 1$ **b** $x = \tan^{-1}(1) = 45^{\circ}$ 2 $\cos 30 = \frac{\sqrt{3}}{PR}$ $\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{PR}$ PR = 2 cm3 $\frac{YZ}{20} = \sin 30$ $YZ = 20 \sin 30$ $= 20 \times \frac{1}{2}$ = 10 cm

4
$$\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$$


So the second angle in the triangle must be 45° . The third angle will be $180 - 90 - 45 = 45^{\circ}$.

3 Rotation 90° clockwise about (1, -1); or rotation 270° anticlockwise about (1, -1).

4 a and b

c Reflection in y = 1

Similar shapes

- 1 a YZW
 - **b** Scale of enlargement = $\frac{\text{enlarged length}}{\text{original length}} = \frac{6.3}{2.1} = 3$
 - **c** $WZ = 4 \times 3 = 12 \text{ cm}$
- **2 a** 37.5°
 - **b** Scale of enlargement = $\frac{\text{enlarged length}}{\text{original length}} = \frac{5}{2.5} = 2$

Length of $AB = 8 \div 2 = 4$ cm

- **c** They are isosceles, because they have two equal sides and two equal angles. Note that the diagrams are not drawn to scale, as is common practice in maths questions you have to go by the numbers.
- **d** Length of BC = length of AC = 2.5 cm
- 3 **a** Scale of enlargement $=\frac{\text{enlarged length}}{\text{original length}} = \frac{4}{6} = \frac{2}{3}$ **b** Length of $RT = 4.5 \times \frac{2}{3} = 3 \text{ cm}$
- 4 **a** Scale of enlargement = $\frac{1}{\frac{1}{1}} \frac{1}{\frac{1}{1}} \frac{1}{\frac{1}{2}} = \frac{1}{2}$
 - **b** Length of CE = length of $CD \div \frac{1}{2} = 2.8 \times 2 = 5.6 \text{ cm}$
 - **c** Angle $ACE = 180 70 64 = 46^{\circ}$

Vectors

1
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ $\mathbf{d} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$

b
$$-\mathbf{p} = \begin{pmatrix} 6\\ -1 \end{pmatrix}$$

c $2\mathbf{p} = \begin{pmatrix} -12\\ 2 \end{pmatrix}$
d $2\mathbf{p} + \mathbf{p} = \begin{pmatrix} -12\\ 2 \end{pmatrix} + \begin{pmatrix} -6\\ 1 \end{pmatrix} = \begin{pmatrix} -18\\ 3 \end{pmatrix}$
 $3\mathbf{p} = 3 \times \begin{pmatrix} -6\\ 1 \end{pmatrix} = \begin{pmatrix} -18\\ 3 \end{pmatrix}$
Therefore, $2\mathbf{p} + \mathbf{p} = 3\mathbf{p}$
3 $\mathbf{a} = \mathbf{a} + \mathbf{b} = \begin{pmatrix} 3\\ 4 \end{pmatrix} + \begin{pmatrix} -5\\ 1 \end{pmatrix} = \begin{pmatrix} 3-5\\ 4+1 \end{pmatrix} = \begin{pmatrix} -2\\ 5 \end{pmatrix}$
 $\mathbf{b} = \mathbf{c} = \mathbf{a} - \mathbf{b} = \begin{pmatrix} 3\\ 4 \end{pmatrix} - \begin{pmatrix} -5\\ 1 \end{pmatrix} = \begin{pmatrix} 3-(-5)\\ 4-1 \end{pmatrix} = \begin{pmatrix} 8\\ 3 \end{pmatrix}$
c $\mathbf{c} = \mathbf{a} - \mathbf{b} = \begin{pmatrix} 3\\ 4 \end{pmatrix} - \begin{pmatrix} -5\\ 1 \end{pmatrix} = \begin{pmatrix} 3-(-5)\\ 4-1 \end{pmatrix} = \begin{pmatrix} 8\\ 3 \end{pmatrix}$

Probability

3

Basic probability

- 1 Probability = $\frac{\text{number of successful outcomes}}{\text{total number of possible outcomes}} = \frac{1}{10}$
- 2 P(not rain) = 1 P(rain) = 1 0.6 = 0.4

- **a** P(a number from 1 to 8) = $\frac{8}{8} = 1$
- **b** P(a multiple of 3) $=\frac{2}{8}=\frac{1}{4}$
- c P(a number greater than 3) = $\frac{5}{8}$

$$4 \quad 2p - 0.1 + 2p + 0.1 + p = 1 \\ 5p = 1$$

$$p = 0.2$$

Outcome	Red	Blue	Green
Duch shilite	2p - 0.1	2p + 0.1	<i>p</i> = 0.2
Probability	= 2 × 0.2 - 0.1 = 0.3	$= 2 \times 0.2 + 0.1$ = 0.5	

Blue is most likely.

Two-way tables and sample space diagrams

1 Work out the missing values one by one, for example in the order shown from first to seventh. (There is more than one order you can do it in.)

	Single	Double	King	Totals
Oak	2	Fourth: 42 - 12 - 14 = 16	Fifth: 30 - 16 - 2 = 12	30
Pine	First: 54 - 14 - 17 = 23	14	17	54
Walnut	1	12	Sixth.: 32 - 12 - 17 = 3	Seventh: 1 + 12 + 3 = 16
Totals	Second: 2 + 23 + 1 = 26	Third: 100 — 26 — 32 = 42	32	100

2 a

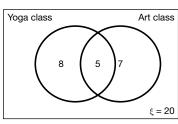
		Spinner					
		1 2 3 4					
Osin	Heads	1, H	2, H	3, H	4, H		
Coin	Tails	1, T	2, T	3, T	4, T		

- **b** P(tail, 1) = $\frac{1}{8}$
- **c** P(head, number greater than 1) = $\frac{3}{8}$

3 8

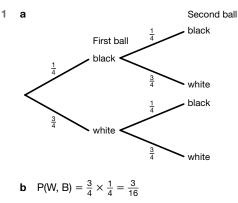
	Study sciences	Do not study sciences	Totals
Boys	$\frac{1}{5} \times 120 = 24$	45 - 24 = 21	$\frac{3}{8} \times 120 = 45$
Girls	75 - 40 = 35	$\frac{4}{3} \times 120 = 40$	120 - 45 = 75
Totals	24 + 35 = 59	21 + 40 = 61	120

- **b** 21 boys do not study science, so probability $=\frac{21}{120}=\frac{7}{40}$
- **c** There are 75 girls and 35 of them study science, so probability $=\frac{35}{75}=\frac{7}{15}$

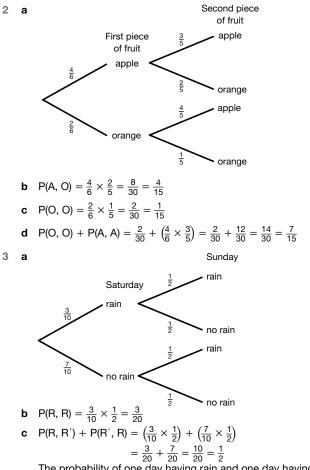

Sets and Venn diagrams

- **a** $\xi = \{21, 22, 23, 24, 25, 26, 27, 28, 29\}$
 - **b** A = {21, 24, 27}
 - **c** B = {24, 28}

2 a


3

- $d \ A \cup B = \{21, 24, 27, 28\} A$ 'union' B means all the values in A and all the values in B
- e A \cap B ={24} A 'intersect' B means only those value that are in both A and B.



- **b** There are 7 adults who only go to art class, so probability $=\frac{7}{20}$
- c 8 adults only go to yoga class and 7 adults only go to art class.
 - Probability = $\frac{8+7}{20} = \frac{3}{4}$
- **a** Total number of respondents = ξ = 25 + 11 + 2 + 12 + 0 + 7 + 3 = 60 P(supermarket only) = $\frac{25}{60} = \frac{5}{12}$
- **b** $P(F) = \frac{12+2+7+3}{60} = \frac{24}{60} = \frac{2}{5}$
- **c** $P(L \cap F) = \frac{2+7}{60} = \frac{9}{60} = \frac{3}{20}$
- **d** $P(S') = \frac{0+7+3}{60} = \frac{10}{60} = \frac{1}{60}$

Frequency trees and diagrams

c P(B, B) = $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$

The probability of one day having rain and one day having no rain is 50%.

Expected outcomes and experimental probability

- 1 **a** The spinner was spun 12 + 13 + 10 + 15 = 50 times.
 - **b** Estimated probability of blue = $\frac{13}{50}$
 - **c** Estimated probability of yellow $=\frac{15}{50}=\frac{3}{10}$
 - **d** You would expect $\frac{10}{15} \times 100 = 20$ green outcomes from 100 spins.
- 2 $0.75 \times 20 = 15$ students would be expected to pass the exam.
 - **a** Total number of customers = 26 + 20 + 6 + 5 + 3 = 60Estimated probability that someone will buy stamps = $\frac{20}{60} = \frac{1}{3}$
 - **b** $\frac{1}{3} \times 450 =$ **150** customers buy stamps each day
 - c $\frac{6}{60} \times 450 =$ **45** customers buy foreign currency each day
 - **d** $450 \times 6 = 2700$ customers each week $\frac{5}{60} \times 2700 = 225$ customers use the post office for banking each week

Statistics

3

Data and sampling

- 1 65, because that is 10% of 650 (the entire population).
- 2 $\frac{50}{25000} \times 100 = 0.2\%$. The sample is not big enough.

People in the town centre may not be the only ones using buses. For example, some people may take buses to the local train station, school or hospital.

3 **a** $\frac{9}{45} \times 400 = 80$ people like carrot cake Sam needs to make 80 cakes.

Edexcel Foundation Mathematics Exam Practice Book

b Assumptions

Assumed the sample is representative of the population; this could affect the answer because not all the 400 people who have accepted the invitation may turn up.

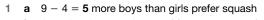
Assumed that these are individual carrot cakes. If instead each cake is a large one divided into 8 slices, then only $80 \div 8 = 10$ carrot cakes would be needed.

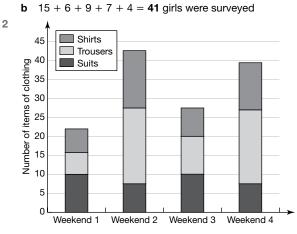
Frequency tables

2

1 a 1 + 11 + 9 + 6 + 1 + 2 = 30 tables

b $(1 \times 1) + (2 \times 11) + (3 \times 9) + (4 \times 6) + (5 \times 1) + (6 \times 2) = 91$ people


Number of electronic devices	Tally	Frequency
0-1		3
2–3	HH HH	10
4-5	Ш	5
6-7	Ш	5
8–9		1

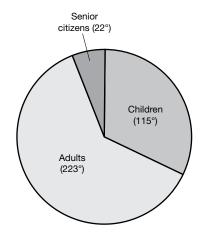

3 a Continuous

b

1	Mass, <i>m</i> (kg)	Tally	Frequency
	$50 \le m < 60$		3
	$60 \le m < 70$	Ш	5
	70 ≤ <i>m</i> < 80		4
	80 ≤ <i>m</i> < 90	₩I	5
	90 ≤ <i>m</i> < 100		3

Bar charts and pictograms

3 a 3 + 3 + 3 + 3 + 2 = 14 hours


b Yorkshire gets 9 hours, Inverness-shire gets 7 hours. Yorkshire gets 2 more hours of sunshine each day than Inverness-shire.

Pie charts

2

- 1 **a** $\frac{150}{360} \times 300 =$ **125** people last saw an action movie
 - **b** Romance = 90°, so $\frac{3}{4} \times 300$ = **225** people did not see a romance movie.

	Children	Adults	Senior citizens
Calculation	$\frac{80}{250} \times 360$	$\frac{155}{250} \times 360$	$\frac{15}{250} \times 360$
Calculation	= 115.2	= 223.2	= 21.6
Angle	115°	223°	220

3 Angle for 8:30–9 pm = 72° $\frac{360}{72} \times 12 = 60$ people were surveyed

Stem and leaf diagrams

- 1 **a** 71 cm this is the highest stem value combined with the highest leaf value
 - **b** 20 count the leaf values
- 2 a Longest shortest = 4.26 2.03 = 2.23 m
- b 3 girls jumped more than 3.5 m (3.56 m, 3.74 m and 4.06 m)
 Write all the amounts in order, and convert them to pounds.

Year 9s	0.50	0.80	0.95	1.30	1.75	2.00	2.65	3.05
Year 10s	0.65	0.75	1.50	1.85	2.70	3.10		

	Year 9s		Year 10s
	95 80 50	0	65 75
	75 30	1	50 85
	65 00	2	70
	05	3	50 85 70 10
Key			
Year 9s			Year 10s
	- 00 F0		OLEE maana CO EE
50 0 mean	S £0.50		0 65 means £0.65

Measures of central tendency: mode

- 1 There are two modes: 3 minutes and 4 minutes, since each appears twice. An alternative correct answer is to say that there is no mode.
- 2 This is the one with the highest frequency: $12 < a \le 13$.
- 3 This is the class with the biggest slice of the pie: £10-£20.
- 4 This is the one represented the most times in the diagram: 25 kg.

Measures of central tendency: median

- 1 Ages in order: 11 11 12 13 13 13 13 $(14 \ 15)$ 15 16 16 17 17 18 18 Median = $14\frac{1}{2}$ years old
- 2 Total frequency = 5 + 12 + 17 + 10 + 6 = 50

Median = $\frac{50+1}{2}$ = 25.5th person

Median class = $12 < a \le 13$

3 Total frequency = 40

Median = $\frac{40+1}{2}$ = 20.5th person

Median age = $\frac{28+29}{2} = 28\frac{1}{2}$ years old

Measures of central tendency: mean

- 1 Mean age = $\frac{6+7+11+13+18}{5}$ = 11 years old
- 2 Number of bedrooms = $(1 \times 4) + (2 \times 7) + (3 \times 13) + (4 \times 17) = 125$

Number of houses = 4 + 7 + 13 + 17 = 41 Mean number of bedrooms = 125 \div 41 = 3.05 \approx 3 bedrooms

3 Number of holidays = $(0 \times 4) + (1 \times 21) + (2 \times 9)$ + $(3 \times 2) = 45$ Number of employees = 4 + 21 + 9 + 2 = 36

Mean number of holidays =	= 45 ÷ 36 =	$1.25 \approx 1$ holiday	

Age of patients, <i>a</i>	Midpoint	Frequency	Midpoint × frequency
0 < <i>a</i> ≤ 10	5	3	15
10 < <i>a</i> ≤ 20	15	18	270
20 <i>< a</i> ≤ 30	25	6	150
$30 < a \le 40$	35	11	385
40 <i>< a</i> ≤ 50	45	10	450
$50 < a \le 60$	55	19	1045
60 <i>< a</i> ≤ 70	65	16	1040
70 <i>< a</i> ≤ 80	75	17	1275
		Total = 100	Total = 4630

Mean age of patients $=\frac{4630}{100}=46.3\approx46$ years old

Range

4

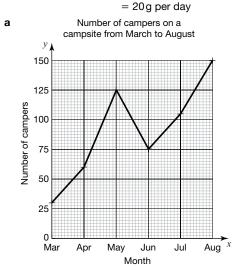
- 1 **a** Range of boys' ages = 4 2 = 2 years
- **b** Range of boys' ages = 4 1 = 3 years
- a Range in temperatures for Resort A = 25 16 = 9°C
 b Range in temperatures for Resort B = 28 13 = 15°C
- **a** Business A: Range = 45816 23561 = £22255
 - Mean profit = $\frac{23561 + 30485 + 39210 + 45816}{4}$ = £34768
 - **b** Business B: Range = $63248 17894 = \pounds45354$ Mean profit = $\frac{32820 + 40328 + 17894 + 63248}{4} = \pounds38572.50$
 - **c Either** Business A because its range in profit is lower and the profit is increasing each year, and so it shows a more consistent performance.

or Business B because its mean profit is higher, and its most recent profit (in Year 4) is $\pounds17432$ more than Business A.

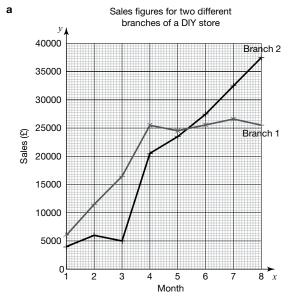
Comparing data using measures of central tendency and range

- 1 **a** Mean time for bus journey $=\frac{32+30+39+32+43+31}{6}=$ 34.5 minutes
 - **b** Range for bus journey = 43 30 = 13 minutes
 - **c** Mean time for train journey $=\frac{16+24+18+26+70+17}{6}=$ 28.5 minutes
 - **d** Range for train journey = 70 16 = 54 minutes
 - e Either The bus is better because although it takes longer (on average), the range is lower, and so you can predict the time it takes for the journey.

or The train is better because it is quicker than the bus (on average), although the range suggests it may be less reliable.


- 2 a Mean = 13. This does not represent the age of the people using the playground. In fact, those using the playground are small children (under 10) and their parents (over 25).
 - **b** There are five modes (3, 4, 5, 7, 8), and so the mode does not represent the age of the people using the playground.
 - **c** Ages in order: 3 3 4 4 5 5 7 7 8 8 26 30 33 39 Median position $= \frac{14+1}{2} = 7.5$ th value Median age = 7 years old
- 3 Mode = 0; Median = 0; Mean = 2 days. Mode or median are the best averages to use, because the mean is skewed by the student who is absent due to sickness for 24 days.

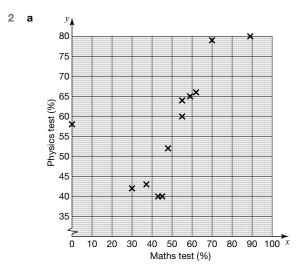
Time series graphs


2

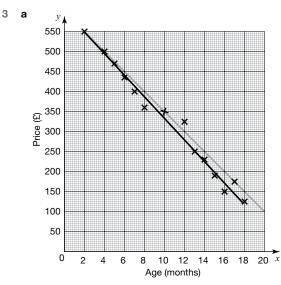
3

- 1 **a** Start at Day 3, read up to the graph line then left to the weight scale: 190 g
 - **b** Start at 225 g, read across to the graph line then down: 5 days old
 - **c** Mean weight gained = $\frac{\text{total weight gained}}{\text{number of days}} = \frac{270 130}{7}$

b There is an increase in campers in May. This may be due to May bank holidays, or May half-term, or perhaps there was some very sunny weather.



 Branch 1 had a steady increase in sales for the first four months. Then sales levelled off to stay at around £25000.
 Branch 2 had a slow start to its sales in the first three months.
 Then perhaps it had a promotion, because sales increased a lot in month 4. Sales have been increasing ever since.


Scatter graphs

1

- **a** Positive correlation. This means as the temperature rises, more pairs of flip flops are sold.
- **b** Negative correlation. This means as the temperature rises, fewer wellington boots are sold.

- **b** The scatter diagram shows a positive correlation between students' maths and physics test percentages. Therefore, the students who got a low percentage in the maths test got the lower percentages in the physics test; the students who got a high percentage in the maths test got the higher percentages in the physics test.
- c The outlier is the point marked at (0, 58).
- d The student was absent for the maths test.

The black line shows the line of best fit.

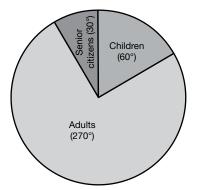
The grey line shows the line where a laptop loses $\pounds150$ every 6 months.

The shop owner is not correct. The line of best fit shows on average a laptop loses approximately $\pounds159/\pounds160$ every 6 months.

b The line of best fit cannot make a prediction outside the available data. The data only goes as far as 18 months.

Practice papers

Non-calculator


- 1 It is in the 1000s column, so 7000.
- 2 $\frac{40}{100} \times 50 = 20$
- 3 No, Sandeep is not correct:

$$\frac{2}{5} = \frac{4}{10} = 0.4$$

 $4 \quad 45 = 5 \times 9 = 5 \times 3 \times 3$ So prime factors are 3 and 5.

- 5 Distance on diagram between lamp post A and lamp post B = 6 cm $6 \times 20 = 120 \text{ m}$
- 6 There are 5 sections on the spinner; 2 are labelled r. $P(r) = \frac{2}{5}$
- 7 Yes. Fun run + music festival = £9689 + £9689 + £6370 = £25748
- 8 3 + 7 = 10 parts in the ratio Milk chocolates = $\frac{7}{10}$
- 9 Prize A = $8 \times 4 = 32$ tickets Prize B = 2 + 4 + 8 + 16 = 30 tickets Prize A gives more tickets.
- **10 a** There are 2 triangles in Pattern 1, and 4 more are added for each pattern. Number of triangles = 4p - 2In Pattern 8, there are $4 \times 8 - 2 = 30$ triangles
 - b No, Harry is incorrect. The number of triangles is not the pattern number multiplied by 4. Rather, it is add 4 triangles each time.
- **11 a** £3.50
 - **b** £5.00 appears the most times
- 12 Cost before VAT = 45 + 3 × 35 = £150 Cost with VAT = 150 × 1.2 = £180
- Bus 2A will stop at: 10:00, 10:15, 10:30, 10:45, 11:00
 Bus 2B will stop at: 10:00, 10:12, 10:24, 10:36, 10:48, 11:00
 They next arrive at the bus stop together at 11 am.
- 14 Total number of patients = 10 + 45 + 5 = 60Angle per patient = $360 \div 60 = 6^{\circ}$

	Children	Adults	Senior citizens	
Number	10	45	5	
Angle	$10 \times 6 = 60^{\circ}$	$45 \times 6 = 270^{\circ}$	$5 \times 6 = 30^{\circ}$	

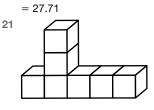
- **15** Cost of T shirts = $8 \times 12 = \pounds96$ (for 48 shirts) Saturday: $\frac{3}{8} \times 48 = 18$ $18 \times 5 = \pounds90$ Sunday: 30 shirts for £3 each $30 \times 3 = \pounds90$ Profit = $90 + 90 - 96 = \pounds84$
- **16 a** $\frac{5}{8} \frac{7}{12} = \frac{15}{24} \frac{14}{24} = \frac{1}{24}$

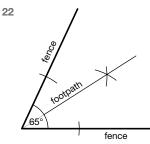
b
$$2\frac{2}{3} \div \frac{1}{9} = \frac{3}{3} \times \frac{3}{4} = 2 \times 3 = 6$$

- 17 **a** 13 4x**b** $(x + 3)(x - 4) = x^2 - 4x + 3x - 12 = x^2 - x - 12$
- **18** 30% = £45

 $10\% = \frac{45}{3} =$ £15

 $100\% = \pounds 15 \times 10 = \pounds 150$


Original price = $\pounds150$


- **19 a** (-3, 0)
 - **b** B = (1, 2), C = (3, -4)Midpoint of $BC = \left(\frac{1+3}{2}, \frac{2-4}{2}\right) = (2, -1)$

20 Count the total number of decimal places in both numbers (3). Do the calculation without the decimal points.

		8	1	5		
		\times	~			
	3	2	6	0	\times	4
2	4	4	Ŝ	0	\times	4 30
2	7	7	1	0		
		1				

Now put 3 decimal places back into your answer: 27.710

23 $\frac{8.02 \times 3.76}{15.98} \approx \frac{8 \times 4}{16} \approx 2$

a
$$K = \frac{1}{2} \times 11 \times 3^2$$

24

b Rearrange the formula:

$$K = \frac{1}{2} m v^2$$

$$v^2 = \frac{2K}{m}$$

$$v = \sqrt{\frac{2K}{m}}$$

Substitute values for K and m to find v

$$v = \sqrt{\frac{2 \times 180}{10}}$$

v = 6 or -6

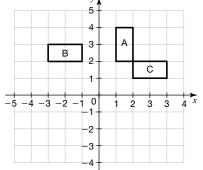
25 $x = 180 - (90 + 36) = 54^{\circ}$

26 **a** Average speed = $\frac{\text{total distance travelled}}{\text{time taken}} = \frac{140}{2} = 70 \text{ km/h}$

- **b** 15 minutes or $\frac{1}{4}$ hour when the line is horizontal and no distance is covered
- **c** Fastest speed is where the graph has its highest gradient (i.e. 1.75 to 2 hours) Gradient = $\frac{40}{0.25}$ = 160
 - Fastest speed = 160 km/h

27 5x + 3 = 6x - 7 (as base angles of an isosceles triangle are equal) 10 = x

$$-x$$


Hence base angles are 53° Other angle = $180 - (53 + 53) = 74^{\circ}$

So $74^\circ = 7y - 10$

Solving gives $y = 12^{\circ}$

Hence $x = 10^{\circ}$ and $y = 12^{\circ}$

28 a and b

c Reflection in x = y, or rotation of 90° anticlockwise about the point (1.5, 1.5)

29
$$b - 3a = \binom{7}{7} - 3\binom{-1}{2} = \binom{7}{7} + \binom{3}{-6} = \binom{10}{1}$$

Calculator

- 1 On your calculator: $7 \div 8 = 0.875$.
- **2** $350 \div 100 \times 140 =$ £490
- **3** £83.75 ÷ 5 = £16.75
- $\pounds16.75 \times 37 = \pounds619.75$
- 4 255 \times 1.16 = 295.8 so the price in France is €295.80. The games console is cheaper in the UK.
- **5** On your calculator: $\sqrt[3]{13.824} + (4.5 0.38)^2 = 19.4$ (to 3 s.f.)

6
$$4.5^2 = 3.8^2 + XY^2$$

$$20.25 = 14.44 + XY^2$$

$$XY^2 = 5.81$$

 $XY = 2.4 \, \text{cm}$ (to 1 d.p.)

- 7 a Friday
 - **b** On Thursday Jeff received 18 work emails and 2 personal emails.

 $\frac{2}{20} \times 100 = 10\%$ of his emails on Thursday were personal.

- **c** Total number of emails received = 8 + 16 + 4 + 15 + 5 + 16 + 2 + 18 + 11 + 10 = 105
 - Total number of work emails received = 16 + 15 + 16+ 18 + 10 = 7575 - 5

 $\frac{75}{105} = \frac{5}{7}$ of his emails that week were about work.

- 8 Factors of 12: 1, 2, 3, 4, 6, 12 Multiples of 9: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90...
 1 × 81 = 81; 3 × 27 = 81
- 9 -1, 0, 1, 2, 3, 4 the range is less than 5 so this is not included
- 10 Area to be painted = $16 \times 1.8 \times 1.8 = 51.84 \, \text{m}^2$
 - 2 tins are enough for $2 \times 20 = 40 \text{ m}^2$ and 3 tins are enough for $3 \times 20 = 60 \text{ m}^2$.
 - 40 < 51.84 < 60

So Geraldine needs 3 tins, at a price of 3 \times 22.50 = £67.50.

11 $6 \times 9 \times 7 + \frac{1}{2} \times 6 \times 8 \times 7 = 546 \text{ cm}^3$

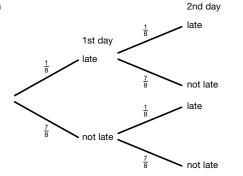
12 84 km/h =
$$\frac{84 \times 1000}{60 \times 60}$$
 m/s = 23.3 m/s (to 1 d.p.)

13 1 part of the ratio = \pounds 30

Jessie gets $2 \times 30 = \pounds60$

14 $PQ^2 = 2^2 + 4^2$

 $PQ^{2} = 20$ $PQ = \sqrt{20}$ $= \sqrt{4 \times 5}$


- = v4 ∧ = 2√5
- 15 $\frac{2}{3}$ are the 42 women so $\frac{1}{3}$ is 21 women and

$$\frac{3}{2} = 21 \times 3 = 63$$

So there are 63 men and women and this represents 50% of the total.

Hence there are 126 people in the audience.

- **16** 58 million = $58 \times 10^6 = 5.8 \times 10^7$ km
- 17 Let number by Seren = xNumber by Tom = x + 3Number by Rohan = x + 3 + 2 = x + 5Total number = x + x + 3 + x + 5 = 3x + 818 **a** 2nd da

b P(late and not late) + P(not late and late) = $\left(\frac{1}{8} \times \frac{7}{8}\right)$ + $\left(\frac{7}{8} \times \frac{1}{8}\right) = \frac{14}{64} = \frac{7}{32}$

$$x = \tan^{-1} \frac{8}{5}$$

- $x = 58^{\circ}$ $\cos 59^{\circ} = \frac{y}{11}$
- $y = 11 \cos 59^{\circ}$

 $=\frac{8}{5}$

- $y = 11 \cos \frac{1}{2}$ = 5.67 cm
- 20 Mean for Team A = $\frac{(0 \times 3) + (1 \times 4) + (2 \times 4) + (3 \times 2) + (4 \times 1) + (5 \times 2)}{16}$

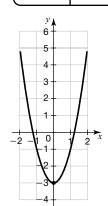
$$= \frac{32}{16} = 2$$

Mean for Team B = $\frac{(0 \times 3) + (1 \times 4) + (2 \times 8) + (3 \times 4) + (4 \times 1)}{20}$
= $\frac{36}{20} = 1.8$

Team A scored more goals on average.

- 21 a Option A is best value if you plan to visit the gym once per week, as in one month 4 visits cost £20 (or 5 visits cost £25). This is less than the monthly fee of £30.
 - **b** The graphs intersect at 6, so the cost is the same for 6 visits.

It is cheaper to pay the monthly fee if you visit the gym more than 6 times.


22 Area of semicircle $=\frac{1}{2}\pi r^2$

Area of large semicircle $=\frac{1}{2} \times \pi \times 7.5^2 = \frac{225\pi}{8}$ Area of small semicircles $= 3 \times (\frac{1}{2} \times \pi \times 2.5^2) = 3 \times \frac{25\pi}{8} = \frac{75\pi}{8}$ Area of lawn $=\frac{225\pi}{8} - \frac{75\pi}{8} = \frac{150\pi}{8} = 58.9 \,\text{m}^2$ (to 3 s.f.)

23 **a**

b

2	x	Operation	У
	-2	$\lambda \times (-\lambda)^2 - 3 =$	5
	-1	$2 \times (-1)^2 - 3 =$	-1
	0	$2 \times (0)^2 - 3 =$	-3
	1	$\mathcal{L} \times (\mathcal{A})^2 - \mathcal{Z} =$	-1
	2	$\lambda \times (\lambda)^2 - 3 =$	5

- 24 a Draw a line of best fit to show that, yes, the car dealer is correct.
 - **b** Start at 55000 miles and read up to your line of best fit, then read across to the price scale. The car dealer should charge £3500 to £4000. (Value varies with students' own graphs.)

25 $(n + 5)(n - 3) = n^2 + 2n - 15$