Number

Factors, multiples and primes
1 a 5
b 1, 12
c $1,5,45$
2 HCF = 10, LCM = 1050
$32 \times 3^{2} \times 5$
4 a 10
b 840
512 and 18

Ordering integers and decimals

1 a false
c true
e true
b true
d true
$2-0.3,-1.5,-2.5,-4.2,-7.2$
$30.049,0.124,0.412,0.442,1.002$
4 a $<$
b $<$

Calculating with negative numbers

Stretch it! negative, yes
1 a -11
c -6
e 0
b 99
d 18
f 25
2 -8 and 9
$3 \quad 32^{\circ} \mathrm{C}$

Multiplication and division

Stretch it! 148419
1 a 2115
b 56364
2 a 47
c 126 remainder 4 or $126 \frac{4}{17}$
b 516
3 a 33 boxes b 1 pencil
$4 £ 91.25$
$5 £ 288$
$6 \quad 307 \frac{2}{3}$
728805
837 boxes

9 He has not placed a zero in the ones column before multiplying through by 5 .

Calculating with decimals

Stretch it! 18.2

1 a 2.33
c 0.035
e 1.563
b 24.391
d 6.099
2 £4.64
3 Erica: £54.92; Freya: £27.46

Rounding and estimation

Stretch it! a $1.0 \quad$ b $1.00 \quad$ c 1.000 - they are all 1
Stretch it! $55.25 \mathrm{~m}^{2}$ - an overestimate.
1 a 0.35
c 32.6
b 10
d 33100
2 a $150 \leq x<250$
c $3.15 \leq x<3.25$
b $5.5 \leq x<6.5$
d $5.055 \leq x<5.065$
$3 \frac{30}{0.5 \times 6}=10$
$4 b$ is false since $18 \times 1=18$ so 18×0.9 cannot be 1.62
c is false since if you divide by a number smaller than 1 the answer will be larger.
5 Tarik should choose One tariff.

Converting between fractions, decimals and percentages

Stretch it! $0 . \dot{1}, 0 . \dot{2}, 0 . \dot{3}, \ldots 0 . \dot{4}, 0 . \dot{5}$
1 a $\frac{32}{100}=\frac{8}{25}$
c $\frac{33}{100}$
b $1 \frac{24}{100}=1 \frac{6}{25}$
d $\frac{95}{100}=\frac{19}{20}$
2 a 0.416
c 0.49
e $0 . \dot{4} 2857 \dot{1}$
b 0.375
d 0.185
3 a 91\%
c 80%
b 30%
d 60\%
4 37.5\%
$530 \%, 0.35, \frac{2}{5}$
$6 \frac{15}{20}=\frac{75}{100}=75 \%$ - Amy
Rudi was highest
Ordering fractions, decimals and percentages
$1 \frac{7}{12}, \frac{3}{8}, \frac{1}{3}$
$2-2.2,-\frac{1}{10}, 1 \%, 0.1,15 \%, \frac{1}{5}, 7$ (so the middle is 0.1)
3 Yes, if the numerator of a fraction is $\frac{1}{2}$ the denominator the fraction is equivalent to $\frac{1}{2}$. If the numerator is smaller than this the fraction must be smaller than $\frac{1}{2}$.

Calculating with fractions

Stretch it! No, you could add the whole number parts then the fraction parts, giving:
$1+2=3$
$\frac{3}{5}+\frac{1}{4}=\frac{17}{20}$

$$
=3 \frac{17}{20}
$$

1 a $1 \frac{5}{8}$
c $\frac{10}{21}$
e $\frac{2}{25}$
b $\frac{6}{17}$
d $8 \frac{3}{20}$
2 a 12
b $£ 35$
c 808 mm
320
435

Percentages

1	a 1.8 cm	b	£0.30	c	4 ml
2	a 33	b	540	c	£101.92
3	a 480	b	133	c	£14.58
4	3052				
	£14300				

Order of operations

1 a 7
b -1.9
c -13
230
$3(8-3+5) \times 4$

Exact solutions

1 a π
b 36π
c $2 \frac{1}{2} \pi$
2 a 7π
b $\frac{5}{8} \pi$
3 Area $=\frac{6}{28}=\frac{3}{14} \mathrm{~cm}^{2}$. Perimeter $=2 \frac{1}{14} \mathrm{~cm}$
4 a $18 \pi \mathrm{~cm}$
b $144 \pi \mathrm{~cm}^{2}$
$5 \frac{1}{2} \pi \mathrm{~cm}$

Indices and roots

1 a $\frac{1}{3}$
b $2 \frac{1}{2}$
c $1 \frac{1}{9}$
$21^{3}, \sqrt[3]{8}, \sqrt[3]{27}, 3^{2}$

$\mathbf{3}$	a	-8	c	81
	\mathbf{b}	1	d	1
$\mathbf{4}$	a	$\frac{1}{4}$	c	1
	b	$\frac{1}{49}$	d	$\frac{1}{3}$
5	5^{4}			

Standard form

1 a 45000000
b 0.091
2 a 6.45×10^{8}
b 7.9×10^{-8}
3345800
$43.1 \times 10^{-2} \quad 3.09 \times 10 \quad 3+\left(2.1 \times 10^{2}\right) \quad 3.2 \times 10^{2}$
53×10^{8}
$60.022=2.2 \times 10^{-2} \mathrm{~m}=2.2 \mathrm{~cm}$

Listing strategies

Stretch it!

red + small, red + medium, red + large,
green + small, green + medium, green + large,
blue + small, blue + medium, blue + large.
1111
112, 121, 211, 113, 131, 311

222
221, 212, 122, 223, 232, 322
333
331313133332323233
123132213231312321

2444446449
464466469
494496499
3 Small A, Small B, Small C, Small D Medium A, Medium B, Medium C, Medium D Large A, Large B, Large C, Large D.

Review it!

17 and 6 (or 11 and 2 , where both are prime and 2 is also a factor of 12)
$2630=2 \times 3 \times 3 \times 5 \times 7=2 \times 3^{2} \times 5 \times 7$
3 18 $=2 \times 3 \times 3$
$36=2 \times 2 \times 3 \times 3$
$40=2 \times 2 \times 2 \times 5$
HCF $=2$
4 -11.5, $-8.3,-3.5,-3.2,1.4$
5 a $£ 51.73$
b $£ 18.33$
6 a 3.22
b 4023
$7 \quad 27$
$8 \quad 31 \frac{4}{11}$
9 a 0.375
b 70%
10 a $\frac{7}{10}$
b $\frac{4}{5}$
11 All of them
12 a $\frac{26}{35}$
b $1 \frac{1}{2}$
c $1 \frac{1}{2}$
$130.25-0.07$
$14 \frac{3}{4}$
$15 \frac{9}{200}$
$16 £ 2.15$
17 a 9 b 5
18 a $3.4 \times 10^{9} \quad$ b $\quad 3.04 \times 10^{-7}$
$1937.55 \leq x<37.65$
20 a 51
b $12,15,21,51,25,52$
21 a $200 \times 9 \times 10=18000=£ 180.00$
b Underestimate since all numbers were rounded down.
22240
23 35\%
24 no since 2 is a prime number and odd + odd + even $=$ even
25 £279.20
26 a 3.1
b 3.05
27 a 325000
b 320000
28729
29 £16.62
303420
31 a 2010 and 2011

Algebra

Understanding expressions, equations, formulae and identities
1 a $3 a+6=10$
c $3(a+2)$
b $\quad C=\pi D$
d $3 a b+2 a b=5 a b$

2 James is correct.
$4 x-2=2 x$ can be solved to find the value of x so it is an equation.
Or, the two sides of $4 x-2=2 x$ are not equal for all values of x so it cannot be an identity.

Simplifying expressions

Stretch it! $12 t \times t \times t, 2 t \times 6 t \times t, 2 t \times 3 t \times 2 t, 3 t \times 4 t \times t$

1 a p^{3}
b $28 b c$
c $12 a b$
d $20 x^{2}$
a $5 x$
b $-7 w$
c 6
d $4 n$
e $-8 g^{2}$
f $6 p q r$
e $4 x$
f $9 a$

Collecting like terms

1 a $5 f$
g $2 x^{2}$
b $7 b$
h t^{3}
c $5 m n$
i $7 \sqrt{x}$
d $4 d-2 e$
j $3 \sqrt{x}$
e $5 x+3 y-2$
k $7 \sqrt{x}$
f $-3 a-b-3$

Using indices

1 a x^{9}	C $6 m^{8}$	e	u^{3}
b p^{5}	d $15 m^{6} n^{4}$	f	t
$2 \mathbf{a} x^{2}$	d $2 x^{3}$	g	$\frac{x}{3}$
b y^{4}	e $\frac{1}{m^{2}}$		
c p	f $\frac{x^{4}}{3}$		
3 a x^{6}	c p^{10}	e	$\frac{1}{x^{6}}$
b y^{16}	d $16 m^{10}$	f	n^{8}
4 a $6 x^{3}$	c $\frac{x}{4}$	e	$\frac{1}{y^{4}}$
b x^{7}	d $27 y^{9}$	f	$a^{5} b^{3}$

Expanding brackets

Stretch it!

$1(x+2)(x+4)=x^{2}+6 x+8$
2 a $2 x^{2}+8 x+6$ c $6 x^{2}+7 x-3$
b $3 x^{2}+10 x-8$
1 a $3 a+6$ e $4 x+4 y+8$
b $4 b-16$
f $-2 y-4$
c $10 c+25$
g $x^{2}-2 x$
d $6-2 e$
h $2 a^{2}+10 a$
2 a $8 x+26$
b $17 y-3$
c $2 m+31$
3 a $x^{2}+5 x+6$
c $a^{2}-4 a-21$
b $y^{2}+y-12$
d $m^{2}-7 m+6$
4 a $x^{2}+2 x+1$
c $m^{2}-4 m+4$
b $x^{2}-2 x+1$
d $y^{2}+6 y+9$

Factorising

Stretch it! $(x+1)$
1 a $3(a+3)$
c $7(1+2 c)$
b $5(b-2)$
d $d(d-2)$
2 a $4(2 a+5)$
c $9(2+c)$
b $4(b-3)$
d $d(2 d-3)$
3 a $2(2 x-3 y)$
d $n(2-9 n)$
b $m(a+b)$
e $5 x(1+2 y)$
c $x(4 x+3 y)$
f $4 p(q-3)$
4 a $(x+1)(x+7)$ e $(x-3)(x-3)$
b $(x-1)(x+5) \quad$ f $(x+3)(x+4)$
c $(x+2)(x-4) \quad$ g $(x-2)(x+5)$
d $(x-2)(x-3) \quad$ h $(x+4)(x-5)$
a $(x+4)(x-4) \quad$ c $(x+9)(x-9)$
b $(x+6)(x-6) \quad$ d $(y+10)(y-10)$

Substituting into expressions

111
2 a 10
c -22
28
b -24
d 20
f -1

3 False.
When $a=3: 3 a^{2}=3 \times 3^{2}=3 \times 9=27$
4 a 20
d 0.012
b 2
e 2400
c $200000\left(=2 \times 10^{5}\right)$
f 10

Writing expressions

1 a $4-q$
d $x y($ or $y x)$
b $n+m($ or $m+n)$
e p^{2}
c $8 t$
f a^{3}
$2 x+y$
$3100 n+75 b$
$49 a+2$
$54 a+10$

Solving linear equations

a 7	16	
b 17	d -2	
a 5	c -4	e
b 5	d 33	f
a 2	$\frac{5}{2}\left(\right.$ Or 2.5, or $2 \frac{1}{2}$)	
b 3	-2	

4 Hannah has not subtracted 4 from both sides.
5 a 3
d -4
b 3
e $-\frac{4}{8}=-\frac{1}{2}(\mathrm{Or}-0.5)$
c 3
6 a 3 d 3
b $3 \quad$ e -6
c $\frac{5}{2}\left(\right.$ Or 2.5 or $\left.2 \frac{1}{2}\right)$
$7 \begin{array}{llll}7 & \mathbf{a} & -4 & \text { c }\end{array}$
b 2
d $\frac{9}{6}=\frac{3}{2}\left(\right.$ Or 1.5 or $\left.1 \frac{1}{2}\right)$

Writing linear equations

1 a $8 s+12$
b 9 cm
2 a 50
b 115°
330 years old
44
58 cm
$6 a=18, b=28$

Linear inequalities

4 a $x>3$

b $x \leq \frac{10}{4}=\frac{5}{2}$

$$
\left(\text { Or } x \leq 2.5 \text { or } x \leq 2 \frac{1}{2}\right)
$$

c $x<-5$

d $x \geq-1$

5 Olivia has not multiplied all the terms in the bracket by the term outside.
6 a $-\frac{5}{2}<x\left(\right.$ Or $\left.x>-\frac{5}{2}\right)$
b -2

7 No, Lee is not correct.
$6 \leq 2 x+4<16$ (-4 from each term in the inequality) $-2 \leq 2 x<12(\div 2)$
$-1 \leq x<6$
Inequality is not true when $x=6$ so $x=6$ is not a possible solution.
8 a $3 \leq x(\operatorname{Or} x \geq 3)$
c $\quad \frac{1}{2} \geq x\left(\mathrm{Or} x \leq \frac{1}{2}\right)$
b $-1>x(\operatorname{Or} x<-1)$
d $2>x \geq-3$

Formulae

$1 £ 305$
227
$3-90$
$4 C=25 d+50$
$5 A=l^{2}$
6 a $4 a+6$
b 30 cm

7 -65
$8 \quad$ a $\quad \frac{v-u}{t}=a \quad$ d $\quad \frac{v^{2}-u^{2}}{2 a}=s$
b $\frac{3 V}{A}=h$
e $g=\frac{2 s}{T^{2}}$
c $\frac{y+9}{3}=x$
Or: $x=\frac{y}{3}+3$

Linear sequences

1 a i 14,17 ii 7,3
iii 27, 33
iv 24,29
$\begin{array}{lllll}\text { b } & \mathbf{i} & 29 & \text { ii } & -13\end{array}$
iii 57
iv 49

2 a 1st term $=2$, 2nd term $=6$,
3rd term $=10,4$ th term $=14$
b 78
3 3, 10
4 a

b 16
c No. The number of triangles forms an even number sequence and 35 is odd.
5 a $4 n-1$
b $4 n-1=99(+1)$
$4 n=100(\div 4)$
$n=25$
Yes, 99 is a term in the sequence because 25 is an integer.

Non-linear sequences

1 1, 3, 5, 7, 9, .. Arithmetic sequence
$1,2,4,8,16, \ldots$ Geometric sequence
1, 4, 5, 9, 14, ... Fibonacci-type sequence
$1,4,9,16,25, \ldots$ Square-number sequence
2 a $\frac{1}{2}, \frac{1}{4}$
d 3,9
b $0.005,0.0005$ e $-0.8,-1.6$
c $\frac{1}{16}, \frac{1}{32}$
f $-24,48$
371
4 a 4th term $=b+a+b=a+2 b$
5th term $=a+b+a+2 b=2 a+3 b$
b 4

Show that...

1 a LHS $=4(x-3)+2(x+5)=4 x-12+2 x+10$

$$
=6 x-2
$$

RHS $=3(2 x-1)+1=6 x-3+1=6 x-2$
LHS $=$ RHS
So $4(x-3)+2(x+5) \equiv 3(2 x-1)+1$
b LHS $=(x+2)(x-2)=x^{2}-2 x+2 x-4=x^{2}-4$
LHS $=$ RHS
So $(x+2)(x-2) \equiv x^{2}-4$
$2 \operatorname{Rod} \mathrm{~A}=n$
Rod $\mathrm{B}=n+1$
$\operatorname{Rod} \mathrm{C}=n+2$
$\operatorname{Rod} \mathrm{A}+\operatorname{Rod} \mathrm{C}=n+n+2$

$$
\begin{aligned}
& =2 n+2 \text { (Factorise) } \\
& =2(n+1)
\end{aligned}
$$

$\operatorname{Rod} A+\operatorname{Rod} C$ is 2 times the length of $\operatorname{rod} B$.

Functions
1 a 27
b 4
c If $x=y$,

$$
\begin{aligned}
& 3 x-3=x(-x) \\
& 2 x-3=0(+3) \\
& 2 x=3(\div 2) \\
& x=\frac{3}{2} \\
& \left(\text { Or } x=1 \frac{1}{2}\right)
\end{aligned}
$$

Coordinates and midpoints

1 a $A(2,2)$
b and \mathbf{c}

d $(-1,-0.5)$

Straight-line graphs

Stretch it! $x=0.5$
1

2

$3 y=x+1$
$4 y=2 x-4$
$5 y=-\frac{1}{2} x+4$
6 a

b

7 Lines A and D are parallel
$8(0,-2)$
9 a $y=3.4$
c $x \approx 2.5$
b $x=0.5$
d $x \approx-0.5$

Solving simultaneous equations

1 a $x=1, y=2$
d $x=3, y=2$
b $x=3, y=-2$
e $x=4, y=-1$
c $x=6, y=-4$
f $x=2, y=1$

27 and 14
3 A burger costs 95 p. A cola costs $£ 1.10$.
4 a $x=2, y=8$
b $x=8, y=1$

Quadratic graphs

Stretch it! $x \approx 3.6$ and $x \approx-0.6$

1 a

b i $x=1 \quad$ ii $(1,-3)$
2 a $x=0$ and $x=2 \quad$ c $x=1$
b $x \approx-1.2$ and $x \approx 3.2$

Solving quadratic equations

Stretch it!

$x=4$ or $x=-4$
$x=5$ or $x=-5$
1 a $x=0$ or $x=4$
d $x=-1$ or $x=-9$
b $x=0$ or $x=-7$
e $x=3$ or $x=-4$
c $x=-4$ or $x=4$
f $x=-2$ or $x=8$
2 a $x=-7$ or $x=7$
b $x=0$ or $x=3$
c $x=-1$ or $x=-6$

Cubic and reciprocal graphs

1 a

\boldsymbol{x}	-3	-2	-1	0	1	2	3
y	-28	-9	-2	-1	0	7	26

b

2 a

\boldsymbol{x}	-4	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	3	4
\boldsymbol{y}	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	1	2	4	-4	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$

b

Drawing and interpreting real-life graphs

1 a

b i € $€ 6$
ii $£ 75$
c From the graph: $£ 30=€ 36$
So $£ 90=€ 36 \times 3=€ 108$
Ring is cheaper in France.
2 a $£ 10$
b 13 p
3 A: The temperature is steadily increasing.
B: The temperature remains constant.
C: The temperature rises steadily for a period and then remains constant.
4 a 30 minutes
b 55 km
c Speed before break $=30 \mathrm{~km} / \mathrm{hr}$
Speed after break $=16.7 \mathrm{~km} / \mathrm{hr}$
d

5 a $6 \mathrm{~m} / \mathrm{s}$
b 4 seconds
c 6 seconds
d $1.5 \mathrm{~m} / \mathrm{s}^{2}$
6 a

b $0.3 \mathrm{~m} / \mathrm{s}^{2}$
7 a 35 cm
b The person stays in the bath.
c The person got out of the bath.
d Running water in the bath was quicker. The slope of the line between O and A (filling the bath) is steeper than the slope of the line between E and F (emptying the bath).

Review it!

1 a $P(3,5)$
b, cand e

d $(-0.5,1.5)$
2 a -2
b 7
c Millie is correct.

$$
\text { When } x=4,3 x^{2}=3 \times 4^{2}=3 \times 16=48
$$

3 a $4(2 x+3)$
b m^{5}
c x^{5}
4 a

x	-1	0	1	2	3
y	-1	1	3	5	7

b

c 2
$5 x=3$
6 a $x \leq 2$

c $x=1,2,3$
d 1
7 a 33
b No. This is a sequence of odd numbers and 44 is even.
c 47
$8 x^{2}+7 x+12$
$9 x=4, y=2$
10 a $12 m$
b $12 p^{2}$
c $6 x$

11 a

b i 25 cm ii 20 inches
c $£ 3.00$
12 a $\mathrm{T}=12.50 x+10$
b 5 days
13 a $\begin{array}{ll}x \leq \frac{6}{4}=\frac{3}{2} & \text { b } 5 \text { and } 6 \\ & \left(\text { Or } x \leq 1 \frac{1}{2}\right)\end{array}$
14 Ollie has squared each term inside the brackets rather than squaring the whole bracket.
$154(P-R)=Q$
16 a $m(m+8)$
b $(x+3)(x+4)$
17 a $3 n-1$
b $2 n-3=112(+3)$
$2 n=115(\div 2)$
$n=57.5$
No, Kadeena is incorrect.
112 cannot be a term in the sequence because 57.5 is not an integer.

18 a $-2 x+23$ b $20 a^{5} b^{3}$
$19 x=4.5$
20 a 4th term: $b+a+b=a+2 b$
5th term: $a+b+a+2 b=2 a+3 b$
6th term: $a+2 b+2 a+3 b=3 a+5 b$
7th term: $2 a+3 b+3 a+5 b=5 a+8 b$
b $\quad a=2, b=3$

Ratio, proportion and rates of change

Units of measure

1 a 3000 m
c $13000 \mathrm{~cm}^{2}$
e 7200 seconds
b 75 mins
d 3.52 litres
f 14 kg
24.175 kg or 4175 g
$3 \quad 2.27 \mathrm{~kg}$

Ratio

Stretch it! $\frac{31}{56}$

1 a 1:4
b 1:3:4
c $4: 5$
2 7:1
3 a 7:1
b 100 tickets
4 a 3:2
b 120
$5 \quad 0.6 \mathrm{~kg}$
612 cm and 15 cm
$7 s=20 t$
840 g

Scale diagrams and maps

Stretch it! 50 miles on ground $=\frac{50}{x} \times 161000 \mathrm{~cm}$ on map
1 A, B, F
2 a 36 km
b 1.25 cm
3120 m
4 a 1 km
b 250°

Fractions, percentages and proportion

$1 \frac{1}{175}$
$2 \quad \frac{11}{24}$
3 a $\frac{3}{4} \quad$ b 25%
4 10\%
5 School A: 125:145 = 25:29
School B: 100:120=5:6
No since the ratios are not equivalent.
64.125 g

Direct proportion

Stretch it! Since for two values to be in direct proportion when one is 0 the other must be 0 .
1 A and E
2 a i 30 meringues
ii 100 meringues

32 hours 30 mins
4 A, D

Inverse proportion

1 D
222.5 mins
$31 \frac{2}{3}$ of a day.
4 a 2
b The age of the chicken and the number of eggs it lays are in inverse proportion. This means that as the age of the chicken increases so the number of legs it lays decreases.

Working with percentages

```
Stretch it! £128
Stretch it! 2% (1.025 }\times100=£110.41
1 a \(£ 51.50\) b 992 c 12.48
2 12.5\% \(3 \quad 20.9^{\circ} \mathrm{C} \quad 4 \quad 25920 \quad 5 \quad £ 150\)
```


Compound units

Stretch itt $\frac{100}{x} \mathrm{mph}$
1164 units $\quad 30.24 \mathrm{~g} / \mathrm{cm}^{3}$
240 minutes $46 \mathrm{~N} / \mathrm{m}^{2}$
$510.8 \mathrm{~km} /$ hour
6475 gallons per hour (to the nearest whole number)
7 Bolt: 100 m in 9.58 seconds $=10.4 \mathrm{~m} / \mathrm{s}$ Cheetah: $120 \mathrm{~km} / \mathrm{hr}=120000 \mathrm{~m} / \mathrm{hour}=120000$
$\div 60 \mathrm{~m} / \mathrm{min}=2000 \mathrm{~m} / \mathrm{min}=2000 \div 60 \mathrm{~m} / \mathrm{sec}$
$=33.3 \mathrm{~m} / \mathrm{s}$ The cheetah is fastest.

Review it!

1 a 3200 m
b 540 seconds
c 400 ml
24.6 km

3150 minutes
$43520 \mathrm{~cm}^{2}$ or $0.352 \mathrm{~m}^{2}$
$530000 \mathrm{~cm}^{2}$
$6 \frac{5}{12}$
7 13:9
85 minutes
$92300 \mathrm{~kg} / \mathrm{m}^{3}$
10 25\%
$11 \frac{12}{25}$ or 48%
$12 \frac{23}{90}$
1325 hours = 1 day and 1 hour
14 a 30 more b $C=4 J$
15 28\%
$16 £ 864$
176 cm
$18 £ 1591.81$
198000 people
203 hours 9 minutes
$21 £ 15.75$
22 20\%
$23 £ 3675$
24 18: 13
251750 men
26 No - for two things to be in direct proportion when one is zero the other must be zero, the graph does not go through the origin so this is not the case.

27 Neither, since the time taken to cook increases as the weight increases it is not in indirect proportion. It is not in direct proportion since a graph to illustrate the relationship would not go through the origin.

2811 seconds
29 She is incorrect since the ratio of females to males must be the same for them to have equivalent proportions.

Geometry and measures

Measuring and drawing angles

1
43°
b Acute
2

b

C

3

b 18°

Using the properties of angles

154°
2 a i 70°
ii Base angles of an isosceles triangle are equal.
b 110°
318°
4 a i 54°
ii Angles on a straight line add up to 180°.
b 83°
5 a 96°
b i $y=96^{\circ}$
ii Use the fact that corresponding angles are equal, then vertically opposite angles are equal.
Or, use the fact that alternate angles are equal, then use angles on a straight line add up to 180°.

6
a 58°
b 64°
c 58° (Alternate angles are equal; or, opposite angles of a parallelogram are equal)

7 Angle $B A D=62^{\circ}$ (Opposite angles of a parallelogram are equal)
Angle $A D E=62^{\circ}$ (Alternate angles are equal)
$x=180-62-62$ (Base angles of an isosceles triangle are equal)
$x=56^{\circ}$
8 Angle $A C B=36^{\circ}$ (Base angles of an isosceles triangle are equal)

Angle $A B C=180-36-36$ (Angles in a triangle add up to 180°)
Angle $A B C=108^{\circ}$
$x=108^{\circ}$ (Alternate angles are equal)

Using the properties of polygons

Stretch it!

1 The angle sum of a triangle is 180 .
Sum of interior angles of a hexagon $=4 \times 180^{\circ}=720^{\circ}$.
2

Polygon	Number of sides (\boldsymbol{n})	Number of triangles formed	Sum of interior angles
Triangle	3	1	180°
Quadrilateral	4	2	360°
Pentagon	5	3	540°
Hexagon	6	4	720°
Heptagon	7	5	900°
Octagon	8	6	1080°
Decagon	10	8	1440°

3 n-2
$4180 \times(n-2)$

Stretch it!

Angles around a point add up to 360°.
No, 360° is not divisible by 108° (interior angle of a regular pentagon).
136°
2 a 24
b 3960°
3135°

Using bearings

1 a 315° b

2344°
3 Kirsty is correct.
The bearing is $314^{\circ}\left(360^{\circ}-46^{\circ}\right)$ as it must be measured clockwise from North.

Properties of 2D shapes

Stretch it!

1 a

b kite
2 a 8 possible lines of symmetry:

b 8
3 a 2
c 1, no
b rhombus
d square, rhombus

Congruent shapes

1 Any accurate copy of shape A.
2 a 120°
b 12 cm
3 a SSS
b ASA

Constructions

Stretch It!

60°

1

2

3

4

5

Drawing circles and parts of circles
1 a chord
d arc
b tangent
e radius
c diameter
f segment

2

3

Loci
1

2

3 a and b

Perimeter

128.8 cm

242 cm
$3 k=4, b=8$
$4 \quad 200+30 \pi \mathrm{~m}$
$5 £ 1.80$

Area

Stretch it! Area of a semicircle $=\frac{\pi r^{2}}{2}$,
Area of quarter circle $=\frac{\pi r^{2}}{4}$
1 a $9.0 \mathrm{~cm}^{2}$
c $28.0 \mathrm{~cm}^{2}$
e $63.6 \mathrm{~cm}^{2}$
b $4.5 \mathrm{~cm}^{2}$
d $5.0 \mathrm{~cm}^{2}$
$29 \mathrm{~cm}^{2}$
$3 \frac{1}{4}$
$418 \mathrm{~cm}^{2}$
$5454.1 \mathrm{~cm}^{2}$

Sectors

1 Area $=39.3 \mathrm{~cm}^{2}$
Perimeter $=25.7 \mathrm{~cm}$
2 Area $=12 \pi \mathrm{~cm}^{2}$
$3 £ 119.92$

3D shapes

Stretch it!

3D shape	Faces	Edges	Vertices
Cube	6	12	8
Cuboid	6	12	8
Square-based pyramid	5	8	5
Tetrahedron	4	6	4
Triangular prism	5	9	6
Hexagonal prism	8	18	12

Stretch it!

1 a 6 possible rectangular faces:

c Kelli has not counted the hidden edges.
2

3 a

b

4

5 a

b

Volume

$1382 \mathrm{~cm}^{3}$
$3 k=264$
$21.96 \mathrm{~m}^{3}$
46.3 cm

Surface area

$1150 \mathrm{~cm}^{2}$
$314 \mathrm{~cm}^{2}$
$236 \pi \mathrm{~cm}^{2}$
4 76.3\%

Using Pythagoras' theorem

$1 \quad 10.2 \mathrm{~cm}$
24.8 m
$354 \mathrm{~cm}^{2}$
4 If the triangle is right-angled, $P Q^{2}=P R^{2}+R Q^{2}$
$P Q^{2}=13^{2}=169$
$P R^{2}+R Q^{2}=8^{2}+5^{2}=89$
$P Q^{2} \neq P R^{2}+R Q^{2}$
Claudia is not correct.
510.63
$6 \sqrt{13}$
$7 £ 910$

Trigonometry

Stretch it! Any lengths for the opposite and hypotenuse in the ratio 1:2.
1 a 0.4
c 1.0
e 48.6
b 0.6
d 26.6
f 54.7
24.6 cm
340.6°
$4 \operatorname{Sin} 15^{\circ}=\frac{\text { opposite }}{10}$
Opposite $=2.6 \mathrm{~m}$

Exact trigonometric values

1 a 0.5
c 0
e $\sqrt{3}$
b 0
d $\frac{1}{\sqrt{2}}$
$2 A C=4 \mathrm{~cm}$
$B C=4 \sqrt{2} \mathrm{~cm}$
330° and 60°
$4 \sin 30^{\circ}=\frac{1}{2}$ therefore, $A B C=30^{\circ}$
$50.5, \frac{3}{4}, \cos 30^{\circ}, \tan 45^{\circ}$

Transformations

Stretch it! Yes

1

2 Translation by vector $\binom{-4}{-2}$
3 a and b

4 Reflection in the y-axis
5 Enlargement by scale factor $\frac{1}{2}$, centre $(3,3)$
6 a and b

c Rotation of 90° clockwise about $(0,0)$

Similar shapes

Stretch it! Perimeter of triangle $A B C=14 \mathrm{~cm}$; perimeter of triangle $D E F=28 \mathrm{~cm}$. The perimeter of a shape enlarged by scale factor 2 will also be enlarged by scale factor 2 . When a shape is enlarged by any scale factor, the perimeter of the shape is enlarged by the same scale factor.
1 a 30°
b 16 cm
c 2 cm
2 a 80°
b 13.2 cm
c 4 cm

Vectors

1 a

c

b

d

2 a

b

3 a $\quad\binom{-3}{9}$
c $\quad\binom{7}{3}$
b $\binom{-8}{12}$
d $\binom{-9}{-9}$

4 No, only Jordan is correct.
Vectors a and d are parallel as $10 \mathbf{a}=\binom{20}{30}$
Vectors \mathbf{a} and \mathbf{b} are not parallel as $-2 \mathbf{a}=\binom{-4}{-6}$

Review it!

1 a

b 3.8 cm
c 50°

2 a 5
b 6
3

$472 \mathrm{~cm}^{2}$
524 cm
6

7 Rotation of 180° about (1, 0)
8 Angle CFE $=112^{\circ}$ (Corresponding angles are equal)
Angle CFG $=180-112=68^{\circ}$ (Angles on a straight line add up to 180°)
Angle GCF = angle CFG (Base angles of an isosceles triangle are equal)
$x=(180-68-68)=44^{\circ}$ (Angles in a triangle add up to 180°)
$9 \frac{9}{20}$ or 45%
10 If triangle $A B C$ is right-angled, $c^{2}=a^{2}+b^{2}$
$c^{2}=8^{2}=64$
$a^{2}+b^{2}=6^{2}+4^{2}=36+16=52$
$c^{2} \neq a^{2}+b^{2}$ so triangle $A B C$ is not right-angled.

b 0.8 m
12 a $\frac{1}{\sqrt{2}}$
b $A B=3 \mathrm{~cm}$
13 a $\binom{8}{1}$
b $\binom{-6}{13}$

14

15

16 a i 35°
ii Base angles of an isosceles triangle are equal.
b 110°
c Triangle $X Y Z$ is isosceles so angle $X Y Z=$ angle $Y X Z$. Angle $c=55^{\circ}$
1712.6 cm
18135°
19

2029.06 cm
2132.3 cm
$227.7 \mathrm{~cm}^{2}$
234 times
243.87 cm

25 a $300 \mathrm{~cm}^{2}$
b $300 \mathrm{~cm}^{3}$
2653.1°
27 Translation by vector $\binom{-7}{-6}$

Probability

Basic probability

Stretch it! No - each time the probability of getting an even number is $\frac{1}{2}$. You would expect to get even numbers approximately 50 times but cannot guarantee it.
$1 \underset{0}{\longrightarrow} \underset{0.5}{\longrightarrow}$
2 a $\frac{3}{25}$
b $\frac{13}{25}$
3 a
4 b
$5 \quad 0.43$
$6 \quad 0.4$

Two-way tables and sample space diagrams
1

	Chicken	Beef	Vegetarian
Fruit	12	6	4
Cake	5	3	8
Total	17	9	12

a 12
b as above

2 a

		Dice 1					
		1	2	3	4	5	6
$\begin{aligned} & \text { ס} \\ & \stackrel{\rightharpoonup}{0} \\ & N \end{aligned}$	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

b i $\frac{1}{18}$
ii $\frac{1}{12}$
iii 0
3 1, 1, 3, 3

Sets and Venn diagrams

Stretch it! None
1 a

b Multiples of 6
2 a $\mathrm{C} \cap \mathrm{T}$ is the set of students who travel by car AND train.
$C^{\prime} \cap B$ is the set of students who do NOT travel by car AND travel by bus.
b i $P(C)=\frac{19}{50}$
ii $\quad P(B \cup T)=\frac{3}{5} \quad$ iii $\quad P\left(B^{\prime} \cap T\right)=\frac{7}{25}$

3

Frequency trees and tree diagrams
1 a

b $\frac{190}{347}$
2 a

b $\frac{9}{25}$
c $\frac{21}{25}$
3 a

b $\frac{5}{7}$

Expected outcomes and experimental probability

Stretch it! The dice has not been rolled enough times carry out further tests.

1135
220 red sweets
350 primes
4 a Charlie - he has carried out the most tests.
b 6

Review it!

130

$3 \quad 0.7$
4 B, C
5 a $\frac{3}{5}$
b 5
6

	Pizza	Pasta	Risotto	Total
Cake	12	6	1	19
Ice cream	10	11	10	31
Total	22	17	11	50

$\begin{array}{ll}7 & 0.7\end{array}$
8 a No, he has not tested his dice enough times. b 18
$9 \quad 0.55$
10 a

$\begin{array}{llll}\text { b } & \text { i } & \frac{1}{6} & \text { ii } \\ \frac{1}{6}\end{array}$
11 a i 6
ii 1
iii 5
b $\frac{4}{8}=\frac{1}{2}$
12 a

b $\frac{7}{12}$
13 a 10
b $\frac{1}{3}$ is only a theoretical probability and therefore will not necessarily be accurate in real life.
140.74 or $\frac{37}{50}$

15 £50
16 a Milo, he has surveyed a larger sample.
b 263

Statistics

Data and sampling

Stretch it! A random sample could be taken; you could allocate a number to each student and randomly generate the numbers to survey. Any method is acceptable as long as each person in the school has an equally likely chance of being chosen. Alternatively a stratified sample could be taken.

1 Primary Source; Recording the data by measuring it yourself.
Secondary source: Any sensible source, e.g. the Met Office, local paper etc.
2 Qualitative data.
3 It is cheaper and quicker than surveying the whole population.
4 a The people working for an animal charity are more likely to be opposed to wearing real fur. Every member of the population does not have an equal chance of being chosen.
b Surveying people in the street, a random telephone survey. Any sensible method that ensure that each member of the population does has an equal chance of being chosen.
5 a $\frac{1}{5}$
b 10 bottles
6 a 12000
b The sample is relatively small. The sample is not a random sample as it is taken on one day in a year.

Frequency tables

1

Number of people on the bus	Frequency
$0-9$	4
$10-19$	12
$20-29$	3
$30-39$	1

2 a

Number of courgettes	Frequency
0	1
1	0
2	1
3	1
4	9
5	3
6	0

b 56
3 There are gaps between his groups - where would he record someone who spent 15.5 hours training?
His groups do not have the same width.

Bar charts and pictograms

1 a 20
b 25%
2 a 4
b 39.2%
c Proportion of boys who play two sports $=\frac{6}{18}=\frac{1}{3}$
Proportion of boys who play three sports $=\frac{3}{12}=\frac{1}{4}$
$\frac{1}{3}>\frac{1}{4}$ so Jasmine is incorrect and you can't prove that what she says is true.

3

4 a 70
b ${ }^{31}$

Pie charts

Stretch it! Round appropriately - but check the angles sum to 360°.

1 Spanish $=168^{\circ}$
French $=108^{\circ}$
German $=84^{\circ}$

2 a 1
b 97.5% or $\frac{39}{40}$
3 a 28
b The bar chart, since the frequency is easy to read from the bar chart.

Stem and leaf diagrams

1 a 7
b $0.2 \mathrm{~kg} / 200 \mathrm{~g}$

21 Age of people using a dentist

2	0000111
3	2557
4	1226

The leaves were not in ascending order. The spaces between leaves were not regular.
3 a Stem and leaf diagram - you can see the smallest number of passengers was 3 , however on the bar chart you only know it is between 0 and 9 .
b Both since the shape of the data is preserved in both.

Measures of central tendency: mode

1 The other three must be 12.2.
$21<t \leq 2$
317

Measures of central tendency: median

15.4

$22<b \leq 4$

3 a Group $\mathrm{A}=83.5$
Group $B=77$
b Group A

Measures of central tendency: mean

Stretch it! a Mode b Mean/Median c Mean/Median

1 a Mean $=4.6$
b You are using the midpoint of the groups as an estimate of the actual value for each group.
28.5

3 No - they could be any pair of numbers which sum to 10 .

Range

18.8

2 a Girls = 3
b Boys $=2$
3 Athlete A
435% or 75%

Comparing data using measures of central tendency and range

1 a i Mean $=83.5$ minutes
ii Median $=30.5$ minutes
b The extreme values affects the mean but not the median.
2 All the data is used to find the mean.
3 Either as long as suitably justified:
Car A - although the mean time is higher, it is more consistent in performance since the range is smaller. Car B - the acceleration is quicker on average.
$4 \mathbf{a}$ and \mathbf{b} The mode or median since the mean will not be a whole number and therefore not meaningful.

Time series graphs

1

2 a $67^{\circ} \mathrm{C}$
b Approx. $27^{\circ} \mathrm{C}$
c No, since it is extrapolation (beyond the limits of the data).
3 a 17000
b i April
ii August
c The number of tourists peaks in April and again in December. The low seasons are February/March and July/August/September.

Scatter graphs

1 a and b

c Positive
d This will vary according to the line of best fit: approximately 4.8 kg
e This is beyond the limits of the data and therefore extrapolation.
2 a, b and c

c The seeds failed to germinate or the seedling died.
d The further the seedling is from the light source the shorter its height.
3 No, although the two things correlate one does not cause another. There may be many reasons why the crime rate is high in the area, perhaps there is poverty and inequality causing social tension.

Review it!

1 The sample is too small and he only asked his friends, therefore not representative of the population of TV viewers.
2
a Margherita
b 5%
c 18°

3 a $\frac{1}{4}$
b 480 cars
c $\left(\frac{105}{360}\right) \times 480=140$ cars
4 a The number of people doing their grocery shopping online is increasing.
b Any sensible answer: approximately 75%
c No - it is outside the limits of the data therefore extrapolation.

5 a Outside: i Mode $=21$ and 31 ii Median $=28.5$ iii Range = 21
Greenhouse: \mathbf{i} Mode $=47$ ii Median $=47$ iii Range $=14$
b The seedlings are taller in the greenhouse since both mode and median is larger, the range of data is smaller in the greenhouse so the height the seedlings reach is more consistent.
c Range $=31$
6 Comparative bar chart or compound bar chart:
a

or:

b $\frac{11}{25}$
7 a 40-59
b The youngest person is between 0 and 19, the youngest may be any age in this range and the oldest is between 80 and 99 therefore any age in this range.
8 a 7
b Size 5
c Mean $=5 . \dot{3}$
d Mode - the mean is not an actual shoe size.
9 a Time for 800 m (seconds)

| 11 | 22589 |
| :--- | :--- | :--- |
| 12 | 019 |
| 13 | 12 |

$$
\text { Key: } 11 \mid 2=112 \text { seconds }
$$

b $\frac{2}{5}$
10 a $\frac{1}{3}$
b 20
c Biology

11 a and c

b Negative
d Approximately 40 minutes: depends on line of best fit.
e This is outside the limits of the data and therefore extrapolation.
f As the age of the customer increases the time spent on the phone decreases.
12 a 74
b The midpoint of the class is used as the age of each of the patients rather than the actual age.
13 Male $<50=40$
Female $<50=35$
Male $\geq 50=19$
Female $\geq 50=26$
14 Annual income for surveyed population

15 Mean = 10.2 (1 decimal place)
$162,3,3,5,6$

