AQA Higher Practice paper (calculator 2)

Higher Tier

The maximum mark for this paper is 80 .
The marks for each question are shown in brackets.

1 One billion in the UK is one thousand million.
Circle one billion written in standard form.
100×10^{6}
1×10^{6}
1×10^{9}
1×10^{8}

Here are 4 graphs.
Circle the letter of the graph of $y=x^{3}$.

B

D

3 The diagram shows part of a regular polygon.
Circle the number of sides of the regular polygon.
6
8
7
5

4 Circle the volume that is the same as $7.6 \mathrm{~m}^{3}$. $760 \mathrm{~cm}^{3} \quad 76 \mathrm{~cm}^{3} \quad 76000 \mathrm{~cm}^{3} \quad 7600000 \mathrm{~cm}^{3}$

Solve $6 x-5>1-2 x$
$7 \quad$ The diagram shows a triangle $A B C$ with an obtuse angle x.

Work out the size of angle x.
Give your answer correct to 1 decimal place.

The diagram shows a triangular prism with a volume of $960 \mathrm{~cm}^{3}$. Find the height of the triangle.

Two spheres are mathematically similar.
The ratio of their volumes is $\frac{27}{8}$
Circle the ratio of their surface areas.
$\begin{array}{llll}\frac{27}{4} & \frac{9}{2} & \frac{27}{8} & \frac{9}{4}\end{array}$
P is inversely proportional to V.
The graph below shows the coordinates of two points that lie on the curve.

Find the value of a.

Sketch the graph of $y=2 x^{2}-5 x+4$

Mark the coordinates where the graph cuts the y-axis and the coordinates of the turning point.
$A B$ is part of a sewer pipe.
Part of a house is shown shaded.
A pipe is to be fitted from P to the edge of the house. The length of the pipe from B to the house needs to be as short as possible.
Using only ruler and compasses, show where the pipe will join the edge of the house.
Show its position with X on the diagram.

[2 marks]
13
Here are sketches of four triangles.

C

B

D

Circle the letter of the triangle that you would use to work out the exact value of $\operatorname{Sin} 60^{\circ}$.
b Show that car B overtakes $\operatorname{car} \mathrm{A}$ at $t=30 \mathrm{~s}$.
a Draw a velocity-time graph showing the motion of the cars from $t=0$ until car B overtakes car A.

Cars A and B are travelling along a straight road.
Car A travels with a constant velocity of $20 \mathrm{~m} / \mathrm{s}$. At time $t=0$, it overtakes car B.
At time $t=0$, car B is travelling with a velocity of $15 \mathrm{~m} / \mathrm{s}$. It immediately accelerates uniformly and both cars travel a distance of 600 m , where car B overtakes car A.

c Find the acceleration of car B.

The line $y=3 x+6$ intersects the curve $y=x^{2}-2 x+1$ at two points.
Find the x-coordinates for each of these two points.
Give your answers correct to 2 decimal places.

The first three terms of a term-to-term sequence are $\begin{array}{lll}a & b & c\end{array}$
The term-to-term rule is multiply by 3 and subtract 2 .
Show that $c=9 a-8$

17 Georgina works in a high street fashion shop.
On the first day of a sale all the prices are reduced by 20%.
On the final day of the sale, the sale prices are all reduced by a further 25%.
Georgina says the shop should on the last day of the sale reduce all the original prices by $20 \%+25 \%=45 \%$.
a Explain why she is wrong.
b What is the correct overall percentage reduction?

The graph shows the curve $y=\mathbf{f}(x)$

The turning point of the curve is at $(3,-2)$
Write down the coordinates of the turning points for the curves with equations
a $y=\mathbf{f}(x+2)$
b $y=\mathbf{f}(x)+2$
c $y=-\mathrm{f}(x)$

Disprove the following statement by giving a counter-example.
For all real numbers a and b, if $b^{2}>a^{2}$, then $b>a$

One of these graphs is a sketch of the curve with equation $y=2^{x}$. Which one? Circle the correct letter.

21 a Make v the subject of the following formula.

$$
\frac{1}{v}+\frac{1}{u}=\frac{1}{f}
$$

b Solve the equation $2 x^{2}-7 x+4=0$ giving your answer to 2 decimal places.

Giovanni deposited $£ 20000$ in a savings account on 1 January 2017.
The account pays 5% interest per year.
At the end of each year, Giovanni withdraws $£ 2000$.
How much will he have in the account in January 2021?
a Prove that the cubic equation $x^{3}-4 x+2=0$ has a root between 0 and 1 .
[2 marks]
b Show that the equation $x^{3}-4 x+2=0$ can be rearranged to give $x=\frac{x^{3}}{4}+\frac{1}{2}$
[2 marks]
c Starting with $x_{0}=0.5$, use the iterative formula $x_{n+1}=\frac{\left(x_{n}\right)^{3}}{4}+\frac{1}{2}$ to find an estimate for one of the roots of the equation by working out x_{4}
Give your answer correct to 3 decimal places.
$x_{4}=$ \qquad

A bag contains only red and blue counters. The ratio of red to blue counters is 4:5 a The total number of counters in the bag is 36 .

Circle the number of red counters in the bag.
20
16
4
36
b Two counters are removed from the bag at random.
Find the probability that
i both counters are red
ii the counters are different colours.

The functions f and g are such that
$\mathrm{f}(x)=5 x^{2}+4$ and $\mathrm{g}(x)=x+1$
a Find $f(-2)$

$$
f(-2)=
$$

\qquad
b Find $\mathrm{f}^{-1}(x)$

$$
f^{-1}(x)=
$$

c Find $\mathrm{fg}(x)$

$$
\mathrm{fg}(x)=
$$

\qquad
$O A B$ is a sector of a circle with radius 8 cm .

a Work out the length of arc $A B$.
Give your answer correct to 2 decimal places.
\qquad
b Work out the area of sector $O A B$.
Give your answer correct to 2 decimal places.
\qquad cm
[2 marks]

Three grandchildren visit their grandparents every 12 days, 16 days and 18 days respectively.
On one day, they all visit their grandparents.
a What is the minimum amount of time after which two grandchildren will call on the same day?
\qquad
b What is the minimum amount of time after which all three will again call on the same day?
\qquad

Show that $\frac{1}{3 x^{2}+5 x-2} \div \frac{1}{9 x^{2}-1}$ simplifies to $\frac{a x+b}{c x+d}$, where a, b, c and d are
integers.
Give the values of a, b, c and d.
$a=$
$b=$
$c=$ \qquad
$d=$ \qquad

