Ratio Skills Edexcel Maths Higher GCSE 9-1

Full worked solutions

Revision answers

Introduction to ratios p. 8

1 a 2:6=1:3 (divide both sides by 2)
b $25: 60=5: 12$ (divide both sides by 5)
c $1.6: 3.6=4: 9$ (divide both sides by 0.4 , or multiply by ten then divide by four)
2 a $250 \mathrm{~g}: 2 \mathrm{~kg}=250 \mathrm{~g}: 2000 \mathrm{~g}=250: 2000=1: 8$
b $25 \mathrm{~m}: 250 \mathrm{~mm}=25000 \mathrm{~mm}: 250 \mathrm{~mm}$
$=25000: 250=100: 1$
c $2 \mathrm{cl}: 1 \mathrm{l}=2 \mathrm{cl}: 100 \mathrm{cl}=2: 100=1: 50$
3 Ratio $=3.5: 2.1=35: 21=5: 3$
Total shares $=5+3=8$
1 share $=£ \frac{400}{8}=£ 50$
5 shares $=5 \times £ 50=£ 250$
3 shares $=3 \times £ 50=£ 150$
44 parts $=180$
1 part $=45 \quad$ (Dividing both sides by 4)
3 parts $=3 \times 45$
$=135$
Hence there are $180+135=315$ members of the gym.
5 The ratio is $21: 25: 29$
Total shares $=21+25+29=75$
One share $=£ \frac{150000}{75}=£ 2000$
Youngest daughter receives $21 \times 2000=£ 42000$
6 Total number of parts in the ratio $=5+2=7$
Now pick a number that is divisible by 7 . We will choose 70.
Dividing this into the ratio $5: 2$ gives 50 male guests and 20 female guests.
60% of male guests are under 40 and 70\% of female guests are under 40.
60% of $50=30$ (males under 40)
70% of $20=14$ (females under 40)
So if there were 70 guests, 44 of them would be under 40 years old. Use this information to work out the correct percentage, whatever the number of guests:
$\frac{44}{70} \times 100=62.9 \%$
7 There are 2 more parts of the ratio for 20p coins, and 6 more 20p coins.

So 2 parts = 6 coins
1 part $=3$ coins.
Hence there are $5 \times 3=1510 p$ coins, and $7 \times 3=21$ 20p coins
Total amount ($£$) in the money box $=15 \times 0.1+21 \times 0.2$

$$
=1.5+4.2=£ 5.70
$$

8 Let x be the number of yellow marbles.
So $5 x=$ number of red marbles, and $2 \times 5 x=10 x$
= number of blue marbles.
Hence the ratio of blue to red to yellow marbles
$=10 x: 5 x: x=10: 5: 1$

Scale diagrams and maps p. 9

1 First convert 150 km to cm .
$150 \mathrm{~km}=150000 \mathrm{~m}=15000000 \mathrm{~cm}$
500000 cm is equivalent to 1 cm on the map.
Distance in cm on the map $=\frac{15000000}{500000}=30 \mathrm{~cm}$
2 a Distance between the ship and the port $=2 \mathrm{~cm}$.

We now need to get the units the same.
$10 \mathrm{~km}=10000 \mathrm{~m}=1000000 \mathrm{~cm}$
The scale is $2: 1000000$
Dividing both sides of the ratio by 2 gives 1: 500000
b Measuring the actual distance between the two ships gives 1.2 cm
Actual distance $=1.2 \times 500000=600000 \mathrm{~cm}$ Divide this by 100 and then 1000 to give the actual distance in km .
$600000 \mathrm{~cm}=6 \mathrm{~km}$

Percentage problems p. 12

$1 \frac{8}{300} \times 100=2 . \dot{6}=2.67 \%$ to 2 d.p.
2 Increase $=$ Final earnings - Initial earnings

$$
=1100000-600000=£ 500000
$$

$\%$ increase $=\frac{\text { Increase }}{\text { original value }} \times 100$

$$
\begin{aligned}
& =\frac{500000}{600000} \times 100 \\
& =83.3 \% \text { to } 1 \text { d.p. }
\end{aligned}
$$

$3 \quad 3.5 \%=\frac{3.5}{100}=0.035$
Add 1 to create a multiplier for the original number: 1.035
New salary $=1.035 \times 38000=£ 39330$
$418 \%=\frac{18}{100}=0.18$
$1-0.18=0.82$
82\% of original price $=£ 291.92$
1% of original price $=\frac{291.92}{82}=3.56$
100% of original price $=3.56 \times 100=356$
Original price $=£ 356$
5 Amount of interest in one year $=3.5 \%$ of $£ 12000$

$$
=\frac{3.5}{100} \times 12000=£ 420
$$

Total interest paid over 6 years $=6 \times £ 420=£ 2520$

Direct and inverse proportion p. 15

1 Inverse proportion means that if one quantity doubles the other quantity halves.
2 a $y=k x$
b $8=k \times 3$ giving $k=\frac{8}{3}$
$y=\frac{8}{3} x$
When $x=4, \frac{8}{3} \times 4=\frac{32}{3}=10.7$ (1 d.p.)
3 a Find the equivalent price in $£$

$$
€ \frac{120}{1.27}=£ 94.49
$$

The sunglasses are cheaper in the UK.
b $£ 94.49-£ 89=£ 5.49$
$4 \mathrm{~V} \boxtimes r^{3}$ so $V=k r^{3}$
When $V=33.5, r=2$ so $33.5=k \times 2^{3}$
$k=\frac{33.5}{8}=4.1875$
Substituting this value of k back into the equation gives
$V=4.1875 r^{3}$
When $r=4, V=4.1875 \times 4^{3}=268 \mathrm{~cm}^{3}$
$5 \quad P \boxtimes \frac{1}{V}$ so $P=\frac{k}{V}$
Hence $100000=\frac{k}{1}$, giving $k=100000$
Formula is $P=\frac{100000}{V}$
When $V=3$,
$P=\frac{100000}{3}$
$=33333$ (to the nearest whole number)
$6 a=k b^{2}$
When $a=96, b=4$ so $96=k \times 4^{2}$ giving $k=6$
Hence $a=6 b^{2}$ and when $b=5, a=6 \times 5^{2}=150$
7 a A square of side $x \mathrm{~cm}$ has an area of x^{2}.
$A=k x^{2}$
As there are 6 faces to a cube, surface area $=6 x^{2}$
Hence $A=6 x^{2}$
So constant of proportionality $k=6$
b $A=6 x^{2}$
When $x=4 \mathrm{~cm}$
$A=6 \times 4^{2}=96 \mathrm{~cm}^{2}$

Graphs of direct and inverse proportion and rates of change p. 18

1 Graph C
2 Graph B
3 As P and V are inversely proportional, $P=\frac{k}{V}$
At point A, when $P=12, V=3$ so $12=\frac{k}{3}$ hence $k=36$
Substituting this value of k back into the equation we have $P=\frac{36}{V}$
When $V=6, P=\frac{36}{6}=6$
Hence $a=6$
4 As x and y are inversely proportional, $y \boxtimes \frac{1}{x}$, so $y=\frac{k}{x}$
When $x=1, y=4$ so $4=\frac{k}{1}$ so $k=4$
The equation of the curve is now $y=\frac{4}{x}$
When $x=4, y=\frac{4}{4}=1$ so $a=1$
When $y=0.8,0.8=\frac{4}{x}$ giving $x=5$ so $b=5$.
Hence $a=1$ and $b=5$.
$5 y=k x^{2}$
When $x=2, y=16$ so $16=k \times 2^{2}$ giving $k=4$.
$y=4 x^{2}$
Hence when $y=36$,
$36=4 x^{2}$ so $x=3$ or -3
Since a is positive,
$a=3$

Growth and decay p. 21

1 For a, b and c , multiplier is $\frac{100 \%+\text { percentage given }}{100}$
a 1.05
b 1.25
c 1.0375
d Multiplier is $\frac{100 \%-\text { percentage given }}{100}=0.79$
2 Multiplier =1- $\frac{18}{100}=0.82$
Value at the end of n years $=A_{\mathrm{o}} \times(\text { multiplier })^{n}$ where A_{0} is the initial value.
Value at the end of 3 years $=9000 \times(0.82)^{3}=£ 4962.312$
$=£ 4962$ (nearest whole
number)

3 Number of restaurants after n years, $R_{n}=R_{\mathrm{o}} \times$ (multiplier) n
Multiplier $=1.25, n=3, R_{n}=4000$
So $R_{0}=\frac{4000}{(1.25)^{3}}=2048$
There were 2048 restaurants 3 years ago.
Ratios of lengths, areas and volumes p. 24
1 Scale factor $=\frac{6}{9}=\frac{2}{3}$
$x=\frac{2}{3} \times 10=\frac{20}{3}=6 \frac{2}{3} \mathrm{~cm}$

2 As the shapes are similar $\frac{V_{\mathrm{A}}}{V_{\mathrm{B}}}=\left(\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}\right)^{3}$
Cube rooting both sides gives $\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}=\sqrt[3]{\frac{\sqrt{V_{A}}}{V_{\mathrm{B}}}}$

$$
\begin{aligned}
\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}} & =\sqrt[3]{\frac{27}{64}} \\
& =\frac{3}{4}
\end{aligned}
$$

$\frac{\text { radius of cylinder } A}{\text { radius of cylinder } B}=\frac{3}{4}$
$\frac{\text { surface area of cylinder } A}{\text { surface area of cylinder } B}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
So surface area of cylinder $A=$ surface area of cylinder

$$
\mathrm{B} \times \frac{9}{16}
$$

Surface area of cylinder A=96× $\frac{9}{16}=54 \mathrm{~cm}^{2}$
3 a As $B E$ is parallel to $C D$ all the corresponding angles in both triangles are the same so triangles $A B E$ and $A C D$ are similar.
$\frac{B E}{8}=\frac{5}{10}$ giving $B E=4 \mathrm{~cm}$
b $B E=4 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$. Angle $A B E$ is a right angle because angle $A C D$ is a right angle and the triangles are similar.
Hence area $A B E=\frac{1}{2} \times 4 \times 5=10 \mathrm{~cm}^{2}$

Gradient of a curve and rate of change p. 27

1 a The gradient represents the acceleration.
b Find the gradient between when time $=2 \mathrm{~s}$ and time $=6 \mathrm{~s}$.

From the graph, acceleration between time $=2 \mathrm{~s}$ and time $=6 \mathrm{~s}$

$$
\begin{aligned}
& =\frac{45-25}{6-2} \\
& =\frac{20}{4} \\
& =5 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

c We need to find a point on the graph where the gradient equals that of the tangent already drawn ($5 \mathrm{~m} / \mathrm{s}^{2}$).

Time when the instantaneous acceleration is the same as the average acceleration $=3.9 \mathrm{~s}$

Converting units of areas and volumes, and compound units p. 30

1 a Surface area $=2 \times 4 \times 6+2 \times 4 \times 5+2 \times 6 \times 5$

$$
=148 \mathrm{~cm}^{2}
$$

i $1 \mathrm{~cm}^{2}=10 \times 10 \mathrm{~mm}^{2}=100 \mathrm{~mm}^{2}$
$148 \mathrm{~cm}^{2}=148 \times 100 \mathrm{~mm}^{2}=14800 \mathrm{~mm}^{2}$
ii $1 \mathrm{~m}^{2}=100 \times 100 \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$
$148 \mathrm{~cm}^{2}=148 \div 10000 \mathrm{~m}^{2}=0.0148 \mathrm{~m}^{2}$
b Volume $=6 \times 5 \times 4=120 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=100 \times 100 \times 100 \mathrm{~cm}^{3}=1000000 \mathrm{~cm}^{3}$
$120 \mathrm{~cm}^{3}=120 \div 1000000=0.00012 \mathrm{~cm}^{3}$
2 Density $=\frac{\text { mass }}{\text { volume }}=\frac{1159}{600}=1.932 \mathrm{~g} / \mathrm{cm}^{3}$ (3 d.p.)
3 First get the units the same.
$1 \mathrm{~m}^{3}=100 \times 100 \times 100 \mathrm{~cm}^{3}=1000000 \mathrm{~cm}^{3}$ Number of ball bearings $=\frac{1000000}{0.5}=2000000$

$$
\text { (i.e. } 2 \text { million) }
$$

$450 \mathrm{~km} / \mathrm{h}=50000 \mathrm{~m} / \mathrm{h}$
$1 \mathrm{~h}=60 \times 60 \mathrm{~s}=3600 \mathrm{~s}$
Now as fewer m / s will be covered compared to m / h we divide by 3600 to convert the speed to m / s.
Hence $50000 \mathrm{~m} / \mathrm{h}=\frac{50000}{3600}=13.89 \mathrm{~m} / \mathrm{s}$ (2 d.p.)
5 a Distance $=$ speed \times time $=70 \times 4=280 \mathrm{~km}$
Mary's speed $=280 / 5=56 \mathrm{~km} / \mathrm{h}$
b If Mary's route was longer, her average speed would increase. If her route was shorter, her average speed would decrease.

Review it! p. 31

180% of the original price $=£ 76.80$
10% of the original price $=\frac{76.80}{8}=£ 9.60$
100% of the original price $=£ 9.60 \times 10=£ 96$
2 a $A_{1}=1.02 \times A_{0}$

$$
\begin{aligned}
& =1.02 \times 5 \\
& =5.10 \mathrm{~m}^{2} \quad(2 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

b $A_{2}=1.02 \times A_{1}=1.02 \times 5.1=5.202 \mathrm{~m}^{2}$
$A_{3}=1.02 A_{2}=1.02 \times 5.202=5.31 \mathrm{~m}^{2}(2$ d.p. $)$
$3 y=\frac{k}{x}$
$4=\frac{k}{2.5}$
$k=10$
Hence $y=\frac{10}{x}$
When $x=5, y=\frac{10}{5}=2$
42 parts of the ratio $=54$ students, so 1 part $=27$ students. Students in the whole year $=2+7$ parts $=9$ parts.
In Year 11, there are $9 \times 27=243$ students.
5 The price of the house has more than doubled.
Multiplier $=1+1.2=2.2$
So $£ 220000 \times 2.2=£ 484000$
The value of the house $=£ 485000$ to the nearest £5000
6 a Simple interest: One year $=2000 \times 0.025=£ 50$ $50 \times 5=250$
After 5 years, there will be $£ 2250$ in the account.
b Compound interest: $2000 \times 1.025^{5}=£ 2262.82$
7 a $400 \times 8.55=3420$ yuan
b Travel agent: $800 \div 8.6=£ 93.02$
Commission $=93.02 \times 0.025=£ 2.33$
So Tom would get £93.02-£2.33 =£90.69
From the post office, Tom would get $800 \div 8.9=£ 89.89$
Tom will get a better deal from the travel agent.

8 The difference between Luke's and Amy's payouts was $£ 4000$. The difference in parts is $7-5=2$.
So 2 parts $=£ 4000$ and 1 part $=£ 2000$
The profits are split into $3+5+7=15$ parts.
Total profits $=15 \times 2000=£ 30000$
$9 \frac{\text { Surface area } A}{\text { Surface area } B}=\left(\frac{\text { Length } A}{\text { Length } B}\right)^{2}$
So $\frac{25}{4}=\frac{5^{2}}{2^{2}}$
Similarly, $\frac{\text { Volume } A}{\text { Volume } B}=\left(\frac{\text { Length } A}{\text { Length } B}\right)^{3}$
$\frac{10}{\text { Volume B }}=\frac{5^{3}}{2^{3}}$
So Volume $B=\frac{10 \times 8}{125}=\frac{80}{125}=0.64 \mathrm{~cm}^{3}$
$107+4=11$ parts in the ratio.
Let this be 1100 members.
There would then be 700 male club members: 25% of this is $0.25 \times 700=175$ junior members.
There would be 400 female club members: 10% of this is $0.1 \times 400=40$ junior members.
In total, there would be $175+40=215$ junior members.
As a percentage, this is $\frac{215}{1100} \times 100=19.54$ $=20 \%$ to the nearest integer.
11 Each cm^{3} of the alloy contains 9 parts ($=0.9 \mathrm{~cm}^{3}$) copper and 1 part ($=0.1 \mathrm{~cm}^{3}$) tin.
So the mass of copper in $1 \mathrm{~cm}^{3}=8.9 \times 0.9=8.01 \mathrm{~g}$
The mass of tin in $1 \mathrm{~cm}^{3}=7.3 \times 0.1=0.73 \mathrm{~g}$
Mass of $1 \mathrm{~cm}^{3}$ of alloy $=8.01+0.73=8.74 \mathrm{~g}$
So the density of the alloy $=8.7 \mathrm{~g} / \mathrm{cm}^{3}$ (1 d.p.)

Exam practice answers

Introduction to ratios p. 34

13 parts $=18$ black balls so 1 part $=6$ black balls
There are $3+2=5$ parts in total, so the total number of balls

$$
=5 \times 6=30
$$

2 total shares $=15+17+18=50$
50 shares $=£ 25000$
1 share $=\frac{£ 25000}{50}=£ 500$
15 year old will get $15 \times £ 500=£ 7500$.
17 year old will get $17 \times £ 500=£ 8500$.
18 year old will get $18 \times £ 500=£ 9000$.
340% of $800==320$ acres
remainder of land area $=800-320=480$ acres
total shares $=9+7=16$
1 share $=\frac{480}{16}=30$
area devoted to sheep $=7$ shares $=7 \times 30=210$ acres
$4 \frac{3 x+1}{x+4}=\frac{2}{3}$
$3(3 x+1)=2(x+4)$
$9 x+3=2 x+8$

$$
\begin{array}{r}
7 x=5 \\
x=\frac{5}{7}
\end{array}
$$

5 For 2 oak trees there are 3 ash trees, so if there are 8 oak trees there would be 12 ash trees.
pine : oak: ash $=5: 8: 12$
There are a total of $5+8+12=25$ parts.
1 part $=\frac{300}{25}=12$
number of ash trees $=12 \times 12=144$

Scale diagrams and maps p. 35

110 cm on map $=10 \times 50000 \mathrm{~cm}=500000 \mathrm{~cm}$ actual distance $500000 \mathrm{~cm}=5000 \mathrm{~m}=5 \mathrm{~km}$
Towns are 5 km apart.
2 a length of road $=2.3 \times 40000 \mathrm{~cm}$

$$
\begin{aligned}
& =92000 \mathrm{~cm} \\
& =920 \mathrm{~m} \\
& =0.92 \mathrm{~km}
\end{aligned}
$$

b length of road $=3 \times 40000 \mathrm{~mm}$

$$
\begin{aligned}
& =120000 \mathrm{~mm} \\
& =12000 \mathrm{~cm} \\
& =120 \mathrm{~m} \\
& =0.12 \mathrm{~km}
\end{aligned}
$$

$35 \mathrm{~cm}: 40 \mathrm{~m}=5 \mathrm{~cm}: 4000 \mathrm{~cm}$

$$
\begin{aligned}
& =5: 4000 \\
& =1: 800
\end{aligned}
$$

scale of drawing $=1: 800$
4 length measured on map $=6 \mathrm{~cm}$
Scale is:
$6 \mathrm{~cm}: 12 \mathrm{~km}=6: 12 \times 1000 \times 100$
= $6: 1200000$
$=1: 200000$

Percentage problems p. 36

1 increase $=£ 35$
percentage increase $=\frac{\text { increase }}{\text { original price }} \times 100$

$$
\begin{aligned}
& =\frac{35}{350} \times 100 \\
& =10 \%
\end{aligned}
$$

2 increase $=$ final earnings - initial earnings

$$
\begin{aligned}
& =1100000-600000 \\
& =£ 500000
\end{aligned}
$$

$\%$ increase $=\frac{\text { increase }}{\text { original value }} \times 100$

$$
=\frac{500000}{600000} \times 100
$$

$$
=83.3 \%
$$

3 multiplier $=1-0.28=0.72$
value of car $=0.72 \times 25000$

$$
=£ 18000
$$

488% of the original price $=£ 14300$
1% of the original price $=\frac{14300}{88}$
100% of the original price $=\frac{14300}{88} \times 100=16250$
original price $=£ 16250$
5 interest earned $=\frac{2.8}{100} \times 8000 \times 4$
= £896

Direct and inverse proportion p. 37

1 a $P=k T$
b $\quad P=k T$ so $k=\frac{P}{T}=\frac{200000}{540}=370.370$
$P=370.370 T=370.370 \times 200=74074$ pascals
(to nearest whole number)
$2 C \boxtimes r^{2}$

$$
C=k r^{2}
$$

$$
480=k \times 3^{2}
$$

$$
k=53.33
$$

$$
C=53.33 r^{2}
$$

cost $=53.33 \times 4^{2}=£ 853.28=£ 853$ (to nearest whole number)
3 a $c \boxtimes \frac{1}{h}$ so $c=\frac{k}{h}$
$3=\frac{k}{12}$, so $k=36$
$c=\frac{36}{h}$
b $c=\frac{36}{h}$

$$
=\frac{36}{15}
$$

$$
=2.4
$$

4 a $350 \times 1.15=€ 402.50$
b $80 \div 1.11=£ 72.07$ (to nearest penny)
c The $€ 80$ she had left cost her $80 \div 1.15=£ 69.57$ before her holiday.
If she hadn't changed this amount, she would have saved $72.07-69.57=£ 2.50$

Graphs of direct and inverse proportion and rates of change p. 39

1 straight line through the origin: B
2 curve that gets close to but does not cross either axis: B

3 a

b i initial rate of change $=$ gradient over first 2 minutes

$$
\begin{aligned}
& =\frac{19.6}{2} \\
& =9.8 \mathrm{~g} / \text { minute }
\end{aligned}
$$

ii initial rate of change $=\frac{9.8}{60}=0.16 \mathrm{~g} /$ second (to $2 \mathrm{~d} . \mathrm{p}$.)

Growth and decay p. 40

1 a multiplier $=1+\frac{\% \text { increase }}{100}=1+\frac{6}{100}=1.06$ population after n years $=A_{0} \times(\text { multiplier })^{n}$, where $A_{0}=$ initial population and $n=$ number of years population after 3 years $=150000 \times 1.06^{3}=178652$
b $\operatorname{Try} n=5$ years: population $=150000 \times 1.06^{5}=200733$
Try $n=4$ years: population $=150000 \times 1.06^{4}=189372$
After 5 years, the population will have risen to over 200000.
2 multiplier $=1-\frac{\% \text { decrease }}{100}=1-\frac{12}{100}=0.88$
value of car after 4 years $=21000 \times 0.88^{4}=£ 12594$
3 multiplier $=1-\frac{\% \text { decrease for each time unit }}{100}=1-\frac{50}{100}=0.5$
2 minutes $=120$ seconds
number of time intervals, $n=\frac{120}{12}=10$
amount at the end of n time intervals $=A_{0} \times(\text { multiplier })^{n}$

$$
\begin{aligned}
& =100 \times 0.5^{10} \\
& =0.1 \text { (to } 1 \text { s.f.) }
\end{aligned}
$$

Ratios of lengths, areas and volumes p. 41
1 a scale factor for enlargement $\left(\frac{\text { big }}{\text { small }}\right)^{3}=\left(\frac{12}{8}\right)^{3}=3.375$ or $\frac{27}{8}$
b $\frac{\text { area of triangle of large prism }}{\text { area of triangle of small prism }}=\left(\frac{12}{8}\right)^{2}$
area of triangle of large prism $=\left(\frac{12}{8}\right)^{2} \times 10=22.5 \mathrm{~cm}^{2}$
c $\frac{\text { volume of small prism }}{\text { volume of large prism }}=\left(\frac{8}{12}\right)^{3}$
volume of small prism $=\left(\frac{8}{12}\right)^{3} \times 450$

$$
=133.33
$$

$=133 \mathrm{~cm}^{3}$ (to nearest whole number)
$2 \frac{\text { volume of larger cuboid }}{\text { volume of smaller cuboid }}=\left(\frac{h}{12}\right)^{3}$
volume of larger cuboid
$\frac{\text { volume of smaller cuboid }}{}=1.953$

$$
\begin{aligned}
\left(\frac{h}{12}\right)^{3} & =1.953 \\
h^{3} & =3374.784 \\
h & =15 \mathrm{~cm} \text { (to nearest } \mathrm{cm} \text {) }
\end{aligned}
$$

3 a i angle $X Y Z=$ angle $T U Z$ (corresponding angles) angle $Z X Y=$ angle $Z T U$ (corresponding angles) angle $X Z Y=$ angle $T Z U$ (same angle)

Hence triangles $X Y Z$ and $T U Z$ are similar.
$\frac{X Y}{T U}=\frac{Y Z}{U Z}$
$\frac{X Y}{3}=\frac{15}{5}$
$X Y=9 \mathrm{~cm}$
ii angle YUT = angle YZW (corresponding angles) angle $Y T U=$ angle $Y W Z$ (corresponding angles) angle $T Y U=$ angle $W Y Z$ (same angle)

Hence triangles $Y U T$ and $Y Z W$ are similar.
$\frac{W Z}{T U}=\frac{Y Z}{Y U}$
$\frac{W Z}{3}=\frac{15}{10}$
$W Z=4.5 \mathrm{~cm}$
b angle $Y T X$ = angle $Z T W$ (vertically opposite angles) angle $Y X T=T Z W$ (alternate angles)

Two angles of both triangles are equal so the third angles must also be equal.
Hence triangles $X Y T$ and $Z W T$ are similar.
ratio of the areas of $T Y X$ and $T W Z=\left(\frac{X Y}{W Z}\right)^{2}=\left(\frac{9}{4.5}\right)^{2}=4$ ratio of areas $=4: 1$

Gradient of a curve and rate of change p. 43

1 a acceleration = gradient of straight line $=\frac{10-0}{15-0}=\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
b Instantaneous acceleration = gradient of the tangent to the curve at 45 s .

Gradient $=\frac{10.5}{40}=0.2625$
Instantaneous acceleration at $45 \mathrm{~s}=0.26 \mathrm{~m} / \mathrm{s}^{2}$ (to $2 \mathrm{~d} . \mathrm{p}$.)
c average acceleration over the first $70 \mathrm{~s}=$ gradient of the line from $(0,0)$ to $(70,26)$
gradient $=\frac{26-0}{70-0}=0.3714 \ldots$
acceleration $=0.37 \mathrm{~m} / \mathrm{s}^{2}$ (to $2 \mathrm{~d} . \mathrm{p}$.)

gradients of the two lines are parallel when time $=34 \mathrm{~s}$

Converting units of areas and volumes, and compound units p. 44

1 pressure $=\frac{\text { force }}{\text { area }}=\frac{200}{0.4}=500 \mathrm{~N} / \mathrm{m}^{2}$
$21 \mathrm{~m}^{2}=100 \times 100 \mathrm{~cm}^{2}=10000 \mathrm{~cm}^{2}$
$1 \mathrm{~cm}^{2}=\frac{1}{10000} \mathrm{~m}^{2}$
$200 \mathrm{~cm}^{2}=\frac{200}{(10000)} \mathrm{m}^{2}=0.02 \mathrm{~m}^{2}$
pressure $=\frac{\text { force }}{\text { area }}=\frac{500}{0.02}=25000 \mathrm{~N} / \mathrm{m}^{2}$
3

4 He has worked out the area in m^{2} by dividing the area in cm^{2} by 100 , which is incorrect.

There are $100 \times 100=10000 \mathrm{~cm}^{2}$ in $1 \mathrm{~m}^{2}$, so the area should have been divided by 10000 .
Correct answer:

$$
\begin{aligned}
\text { area in } \mathrm{m}^{2} & =\frac{9018}{10000} \\
& =0.9018 \\
& =0.90 \mathrm{~m}^{2} \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

5 distance in first two hours $=$ time \times speed

$$
\begin{aligned}
& =2 \times 60 \\
& =120 \mathrm{~km}
\end{aligned}
$$

distance in next three hours $=$ time \times speed

$$
\begin{aligned}
& =3 \times 80 \\
& =240 \mathrm{~km}
\end{aligned}
$$

total distance $=120+240$

$$
=360 \mathrm{~km}
$$

average speed $=\frac{\text { distance }}{\text { time }}$

$$
=\frac{360}{5}
$$

$$
=72 \mathrm{~km} / \mathrm{h}
$$

