Answers

For full worked solutions, visit: www.scholastic.co.uk/gcse

Number

Integers, decimals and symbols

- **b** 2.001 **c** 2.3 **d** 87 **1 a** 200.1 **2 a** 140.94 **b** 1.4094 **c** 290 **d** 4.86
- 3 -0.5, 0, 0.012, 0.12, 12
- **4 a** $\frac{5}{0.5} = 10$ **b** $1\frac{5}{9} > \frac{4}{3}$ **c** -3 < -1
- **5 a** 5 **c** −15 **e** −4
- **b** -8
- **d** 6

Addition, subtraction, multiplication and division

- **1 a** 1561
- **c** 69.93
- **b** 3047
- **d** 23.923
- **2 a** 2819
- **c** 8.185
- **b** 287 **d** 5.401
- **3 a** 29798 **b** 29.26 **c** 40.768
- **4 a** 46 **b** 343
- **c** 35.4

Using fractions

- **1 a** $\frac{16}{5} = 3\frac{1}{5}$ **c** $\frac{5}{8}, \frac{3}{4}, \frac{9}{10}, 1\frac{1}{5}, \frac{16}{5}$
 - **b** $1\frac{1}{5} = \frac{6}{5}$ **d** $4\frac{2}{5}$ **e** $2\frac{23}{40}$

- 2 $\frac{1}{45}$, $\frac{1}{12}$, $\frac{1}{48}$ 3 a $7\frac{1}{3}$ b $3\frac{1}{2}$

Different types of number

- **1 a** 16 **b** 5
- **c** 16
- $2 \quad 2 \times 2 \times 3 \times 5 \times 5$
- 3 every 144 days
- 4 a $2^2 \times 3^3 \times 7$
- **b** 36

Listing strategies

- **1** 12
- **2** 180

The order of operations in calculations

- **1** a 18
- **b** 13
- **c** 25
- **2 a** 10
- **b** 23

Indices

- **1** a 7¹⁰
- **b** 3⁻⁶

- **2 a** 5^7
- **c** $2^{10} \times 5^{-3}$
- **b** 6^{-3}

- **d** $7^{10} \times 11^{-1}$
- 3 a 1
- **c** 16 **e** 18
- **b** 10
- **d** $\frac{1}{5}$ (or 0.2)
- **4** x = 1

Surds

- 1 a √6

- **b** 5 **c** 18 **d** 20
- **2** a = 2
- **3 a** $3\sqrt{5}$
- **b** $6\sqrt{2}$
- **4 a** $\frac{16}{3\sqrt{2}} = \frac{16\sqrt{2}}{3\sqrt{2}\sqrt{2}} = \frac{16\sqrt{2}}{3\times 2} = \frac{8\sqrt{2}}{3}$ **b** $8 2\sqrt{7}$
- **5** a −4
- **b** $7 + 4\sqrt{3}$ **c** $5 + 3\sqrt{3}$

Standard form

- **1 a** 0.005
- **b** 565 000
- **2 a** 2.5×10^4
- **c** 5×10^2
- **b** 1.25×10^{-3}
- **d** 1.4×10^{-2}
- 3 a 9×10^{-4}
- **c** 2×10^2
- **b** 2.4×10^3
- **d** 8.04×10^4
- **4 a** 1.33×10^{10} pounds
 - **b** 26600000 people
- **5 a** 1.55×10^4
- **c** 5×10^2
- **b** 655 000
- d 4×10^3

Converting between fractions and decimals

- **1 a** 0.43
- **b** 0.375
- **c** 0.55

- 2 a $\frac{4}{5}$
- **b** $\frac{9}{20}$ **b** $\frac{2}{45}$
 - **c** $\frac{73}{125}$ **c** $\frac{21}{22}$
- 3 a $\frac{7}{9}$

Converting between fractions and percentages

- 1 a $\frac{1}{4}$
 - **b** $\frac{17}{20}$
- 2 maths: 81.25%
 - Charlie did better at maths.

- **3 a** 30% **b** 16% **c** 42.9%

Fractions and percentages as operators

- **1** a £480
- **b** £4.50
- **c** 76 kg
- 2 School A: 336, School B: 455

Standard measurement units

- **1 a** 9700 a
- **b** 0.85 litres **c** 205 000 cm

- **3** £81.60

Rounding numbers

2 8.64×10^4 seconds

- **1 a** 1260
- **c** 0.000308 **e** 1.81×10^{-4}
- **b** 14.9
- **d** 9080000
- **2 a** 10.6 **c** 0.03
 - **b** 123.977 **d** 3.971
- **e** 0.002 **f** 4.10
- **3 a** 2000
- **b** 2000
- **c** 1990
- 4 0.0004 (4 decimal places)

Estimation

- **1 a** 2400
- **b** 3
- e A
- **b** C
- f B
- i A
- c B
- g C
- **d** B
- h A
- **3 a** 6.7 accept 6.5 to 6.9
 - **b** 10.2 accept 10.1 to 10.3
 - c 12 accept 10 to 14
 - **d** 5 accept 4 to 6

Upper and lower bounds

- 1 a 144.5 cm
 - **b** 145.5 cm
 - **c** $144.5 \le l < 145.5 \text{ cm}$

Review it!

- **1 a** 24647.515 **b** 21.5 (to 1 d.p.)
- **2 a** 6.5 **c** 81

 - **b** 4
- **d** 5.94
- 3 a $5\frac{1}{3}$
- **b** $9\frac{7}{13}$
- 4 $4\frac{3}{4} + \frac{1}{2}$
- **5** a lower bound = $10.113 \,\text{cm}^2$ (to 3 d.p.) upper bound = $10.180 \, \text{cm}^2$ (to $3 \, \text{d.p.}$)
 - **b** 10 cm²
- 6 a 3.34×10^{23} molecules
 - **b** $2.99 \times 10^{-26} \text{kg}$
- **7** 0.16
- 8 a 1

- b 3 **9** $5.55 \le y < 5.65$
- **10** $\frac{1-\sqrt{2}}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-2\sqrt{2}+2}{1-2} = \frac{3-2\sqrt{2}}{-1} = 2\sqrt{2}-3$
- **11** 111.5 ≤ *a* < 112.5
- 12 $\frac{8}{11}$
- **13 a** $0.287996 \le c < 0.289272$
 - **b** 0.29 (to 2 s.f.)
- 14 a $\frac{2}{3}$
 - **b** 80
- **15 a** 4.5×10^{-7}
 - **b** 1.2×10^7
 - **c** 5.64×10^3
- **16** 3.2×10^{-1}
- **17 a** 1, 2, 4, 8, 16, 32, 64
 - **b** 4

Algebra

Simple algebraic techniques

- 1 a formula
- **b** identity
- c expression
- **d** identity e equation
- **2 a** $10x^2 + 4x$ **c** $-3x^2 + 10xy$

 - **b** 3a b **d** $3x^3 x 5$
- **3** 16

Removing brackets

- **1 a** 2x + 8 **c** x 1 **e** $3x^2 + 3x$

- **b** 63x + 21 **d** $3x^2 x$ **f** $20x^2 8x$
- **2 a** 5x + 12 **c** $4x^2 + 2x$

 - **b** 3x + 45 **d** $3x^2 10x + 8$
- **3 a** $t^2 + 8t + 15$ **c** $6y^2 + 41y + 63$
 - **b** $x^2 9$
- **d** $4x^2 4x + 1$
- **4 a** $2x^3 + 21x^2 + 55x + 42$
 - **b** $24x^3 46x^2 + 29x 6$

Factorising

- 1 a 6(4t + 3)
- **c** 5y(x + 3z)
- **b** a(9-2b)
- **d** $6xy^2(4x^2+1)$
- **2 a** (x + 7)(x + 3)
- **c** (2x + 5)(3x + 2)
- **b** (x + 5)(x 3)
- **d** (2x + 7)(2x 7)

Changing the subject of a formula

- **1 a** $r = \sqrt{\frac{A}{\pi}}$ **b** $r = \sqrt{\frac{A}{4\pi}}$ **c** $r = \sqrt[3]{\frac{3V}{4\pi}}$
- **2 a** c = y mx
- **b** u = v at
- $e \quad u = \sqrt{v^2 2as}$
- **c** $a = \frac{v-u}{t}$
- **f** $t = \frac{2s}{u + v}$

Solving linear equations

- **1 a** x = 3

 - **b** x = 3 **c** x = 20
- **2 a** x = 5
- **b** x = 18 **c** x = 20
- **3 a** x = -2 **b** m = 1 **c** $x = \frac{6}{5}, 1\frac{1}{5}$ or 1.2

Solving quadratic equations using factorisation

- 1 a x = -2 or x = -3
 - **b** x = -3 or x = 4
 - **c** $x = -\frac{7}{2}$ or x = -5
- **2** a Area = $\frac{1}{2}$ × base × height

$$\frac{1}{2}(2x+3)(x+4) = 9$$
$$\frac{1}{2}(2x^2+11x+12) = 9$$

$$2x^2 + 11x + 12 = 18$$

$$2x^2 + 11x - 6 = 0$$

- **b** $x = \frac{1}{2}$ **c** base = 4 cm, height = 4.5 cm

For full worked solutions, visit: www.scholastic.co.uk/gcse

3 By Pythagoras' theorem $(x + 1)^2 + (x + 8)^2 = 13^2$

$$x^2 + 2x + 1 + x^2 + 16x + 64 = 169$$

$$2x^2 + 18x - 104 = 0$$

Dividing through by 2 gives

$$x^2 + 9x - 52 = 0$$

$$(x-4)(x+13)=0$$

So
$$x = 4$$
 or -13 (disregard $x = -13$ as x is a length)

Hence x = 4 cm

Solving quadratic equations using the formula

1
$$x = 2.14$$
 or $x = -1.64$ (to 3 s.f.)

2 a
$$\frac{2x+3}{x+2} = 3x+1$$

$$2x + 3 = (3x + 1)(x + 2)$$

$$2x + 3 = 3x^2 + 7x + 2$$

$$0 = 3x^2 + 5x - 1$$

$$3x^2 + 5x - 1 = 0$$

b
$$x = -1.85$$
 or $x = 0.18$ (to 2 d.p.)

Solving simultaneous equations

1 a
$$x = 2, y = -1$$

b
$$x = 4, y = 2$$

2
$$x = \frac{1}{5}, y = -2\frac{3}{5} \text{ or } x = \frac{1}{2}, y = -2$$

3 Equating the y values gives

$$x^2 + 5x - 4 = 6x + 2$$

$$x^2 - x - 6 = 0$$

$$(x-3)(x+2)=0$$

$$x = 3 \text{ or } -2$$

When
$$x = 3$$
, $y = 6 \times 3 + 2 = 20$

When
$$x = -2$$
, $y = 6 \times (-2) + 2 = -10$

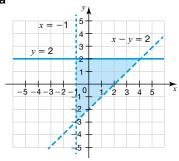
Points are (3, 20) and (-2, -10)

Solving inequalities

- 1 a x > 6
 - ${x: x > 6}$
 - **b** $x \ge 11$
 - *x* ≥ 11 8 9 10 11 12 13 14 15 16 17 ${x: x \ge 11}$
 - **c** x < 26

 ${x: x < 26}$

- **2 a** x > 10 **b** x < 0.4 or $\frac{2}{5}$
- **c** $x \le 8$



- **b** (0, 2), (0, 1), (0, 0), (0, -1), (1, 2), (1, 1), (1, 0), (2, 2),(2, 1), (3, 2)
- 4 x < -2 and x > 5

Problem solving using algebra

- **1** 26, 51
- **2** 65
- 3 9cm by 3cm

Use of functions

- **1** a -1

- 2 a $\sqrt{x^2 + 8x + 7}$
- **b** $\sqrt{(x^2-9)}+4$

Iterative methods

1 1.521

Let
$$f(x) = x^3 - x - 2$$

$$f(1.5215) = (1.5215)^3 - 1.5215 - 2 = 0.0007151$$

$$f(1.5205) = (1.5205)^3 - 1.5205 - 2 = -0.005225$$

As there is a change in sign, a = 1.521 to 3 decimal places.

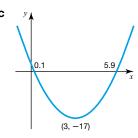
Equation of a straight line

- **1 a** 2
- **b** $-\frac{1}{2}$ **c** $y = -\frac{1}{2}x + 5$
- **2** v = 3x 3
- 3 2x y + 2 = 0
- 4 a $\frac{1}{2}$
- **b** (2, 2)

ii
$$y = -2x + 6$$

Quadratic graphs

- 1 a $2(x-3)^2-17$
 - **b** i (3, -17)
 - ii x = 0.1 and x = 5.9



- **2 a** $y = x^2 4x 5$
- **b** $y = -x^2 + 9x 14$
- 3 a $x^2 + 12x 16 = (x + 6)^2 52$
 - **b** (-6, -52)

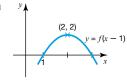
Recognising and sketching graphs of functions

- **1** a B
- c E

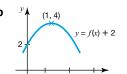
- b F
- **d** A
- f C
- 2 a y 2 -1 0 360° x 90° 180° 27,0° -1
 - **b** $x = 240^{\circ}$
- **3** a A
- **b** G
- c F
- d E

Translations and reflections of functions

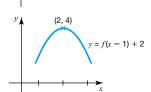
- **a** (3, 5)
- **c** (2, -5)
- (-1, 5)
- \mathbf{d} (-2, 5)
- 2 а



C y = -f(x -



d



(2, -2)

Equation of a circle and tangent to a circle

- **1 a** (0, 0)
- **2 a** $x^2 + y^2 = 100$
 - **b** Gradient of radius to $(8, 6) = \frac{6}{8} = \frac{3}{4}$ Gradient of tangent = $-\frac{4}{3}$
 - **c** $y = -\frac{4}{3}x + 16\frac{2}{3}$

Real-life graphs

- 1 a 5km/h
- **b** 0.25 hours **c** 24 km/h

Time (s)

-12

d 432

c -1

12

48

15

b u = 4 m/s **c** 1.33 m/s²

Generating sequences

1 a 17

b 3.0

17, 290

3 2.25, 5.5

The nth term

1 a 47, 44, 41

2 a 6, 18, 54, 162

b no

a $8x^6v^3$

a -9x + 12 **b** 6x + 4

Review it!

c False: n could be a decimal such as 4.25, so squaring it would not give an integer.

2 Let the four consecutive numbers be n, n + 1, n + 2

Since the sum is a multiple of 2, it is always even.

Therefore the sum of four consecutive numbers is

3 Let the consecutive integers be x, x + 1 and x + 2. Sum of the integers = x + x + 1 + x + 2 = 3x + 3

As 3 is a factor, the sum must be a multiple of 3.

The numerator is larger than the denominator so the

fraction will always be greater than 1. Statement is

As a is larger than b, squaring a will result in a larger

number than squaring b. Hence $a^2 > b^2$ so the

The square root of a number can have two values

one positive and the other negative so this statement

d False: if $n \le 1$ this is not true.

Sum = n + (n + 1) + (n + 2) + (n + 3)

and n + 3.

always even.

= 3(x + 1)

false.

statement is false.

= 4n + 6= 2(2n + 3)

c
$$6x^3 + 25x^2 + 16x - 18$$

2 a
$$(2x - 1)(x + 4)$$

3 a $8x^6v^3$ **b** $6x$

is false

b
$$x = \frac{1}{2}$$
 or $x = -4$
c $\frac{5}{h}$

4
$$x = 2, y = 1$$

5 a
$$\frac{3}{x+7} = \frac{2-x}{x+1}$$

$$3(x + 1) = (2 - x)(x + 7)$$
$$3x + 3 = 2x + 14 - x^{2} - 7x$$

$$3x + 3 = -x^2 - 5x + 14$$

$$x^2 + 8x - 11 = 0$$

b
$$x = 1.20 \text{ or } x = -9.20 \text{ (to 2 d.p.)}$$

6
$$x = \frac{3y - 2z}{az + 1}$$

7 **a**
$$f^{-1}(x) = 3x - 15$$
 or $f^{-1}(x) = 3(x - 5)$

b
$$k = 7$$

8 a 26, 22, 18 **b** 8th term =
$$-2$$

9 The point lies outside the circle.

10
$$x - 9y$$

11 a
$$2(x+2)^2-7$$

b i
$$(-2, -7)$$

ii
$$x = -3.9$$
 and $x = -0.1$

b Both 2 and 3 are factors, so 6 must also be a factor. **a** nth term = 2n - 3**b** x = 31

nth term = $4n^2 + n - 1$

Arguments and proofs

a True: 2n is always even as it is a factor of 2. Adding 1 to an even number always gives an odd number.

b False: $x^2 = 9$, so $x = \sqrt{9} = \pm 3$.

-3.9 -0.1 (-2, -7)

13
$$v = 7x + 12$$

14
$$x = -2$$
, $y = 0$ or $x = \frac{6}{5}$, $y = \frac{8}{5}$

Ratio, proportion and rates of change

Introduction to ratios

- **1 a** 1:3
- **b** 5:12
- **c** 4:9

- **2** a 1:8
- **b** 100:1
- **c** 1:50
- 3 £250, £150
- 4 315 members
- **5** £42000
- 6 62.9%
- **7** £5.70
- 8 10:5:1

Scale diagrams and maps

- 1 30 cm
- 2 a 1:500000 b 6km

Percentage problems

- **1** 2.67%
- **3** £39330
- **5** £2520

- **2** 83.3%
- 4 £356

Direct and inverse proportion

- Inverse proportion means that if one quantity doubles the other quantity halves.
- **2 a** y = kx
- **b** 10.7
- 3 a cheaper in the UK
 - **b** £5.49 cheaper in the UK
- 4 268 cm³
- 5 33333 (to nearest whole number)
- **6** 150
- 7 **a** $A = 6x^2, k = 6$
- **b** 96 cm²

Graphs of direct and inverse proportion and rates of change

- 1 Graph C
- 2 Graph B
- 3 a = 6
- **4** Equation connecting *x* and *y* is $y = \frac{k}{x}$

When
$$x = 1$$
, $y = 4$ so $4 = \frac{k}{1}$ so $k = 4$

The equation of the curve is now $y = \frac{4}{x}$

When x = 4, $y = \frac{4}{4} = 1$ so a = 1

When y = 0.8, $0.8 = \frac{4}{x}$ giving x = 5 so b = 5.

Hence a = 1 and b = 5.

- **5** $v = kx^2$
 - When x = 2, y = 16 so $16 = k \times 2^2$ giving k = 4.

$$v = 4x^2$$

Hence $36 = 4x^2$ so x = 3

a = 3

Growth and decay

- **1** a 1.05
- **c** 1.0375
- **b** 1.25
- **d** 0.79
- 2 £4962 (to nearest whole number)
- 3 2048

Ratios of lengths, areas and volumes

- 1 $6\frac{2}{3}$ cm
- 2 $\frac{V_{\rm A}}{V_{\rm n}} = \frac{27}{64} = (\text{scale factor})^3$, so scale factor $= \frac{3}{4}$
 - $\frac{A_A}{A_B}$ = (scale factor)² = $\frac{9}{16}$
 - So $A_A = \frac{9}{16} \times 96 = 54 \,\mathrm{cm}^2$
- 3 a Triangles ABE and ACD must be proved similar: BE parallel to CD, all the corresponding angles in both triangles are the same.
 - $BE = 4 \, \text{cm}$
 - **b** 10 cm²

Gradient of a curve and rate of change

- 1 a The gradient represents the acceleration.
 - **b** $5 \, \text{m/s}^2$
 - **c** 3.9s

Converting units of areas and volumes, and compound units

- 1 a i 14800 mm²
 - ii 0.0148 m²
 - **b** 0.00012 m³
- 2 1.932 g/cm³ (to 3 d.p.)
- 3 2000000
- 4 13.8 m/s (to 2 d.p.)
- **5 a** 56 km/h
 - **b** The distance will not be the same, so the average speed will be different.

Review it!

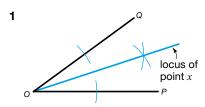
- **1** £96
- 2 a 5.10 m²
 - **b** 5.31 m²
- **3** v = 2
- 4 243 students
- **5** £485000
- 6 a £2250
 - **b** £2262.82
- 7 a 3420 yuan
 - **b** travel agent
- 8 £30000
- 9 0.64 cm³
- **10** 20%
- 11 8.7 g/cm³

Geometry and measures

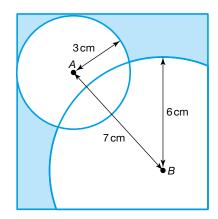
2D shapes

- 1 a true
- c true true
- false
 - false true

Constructions and loci



This is a reduced version of the answer.



Properties of angles

- 144°
- 2 **a** 9
- **b** 1260°
- 20° 3
- **a** $x = \text{angle } EBC = 55^{\circ} \text{ (alternate angles)}$
 - **b** Angle $EHI = 180 (85 + 55) = 40^{\circ}$ (angle sum in a triangle)

Angle $DEH = \text{angle } EHI = 40^{\circ} \text{ (alternate angles)}$

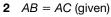
5 77°, 103°, 77°, 103° (a = 24).

Congruent triangles

- **1** AC = AC (common to both triangles)
 - AB = AD (given)
 - BC = CD (given)

Triangles ACD and ACB are congruent (SSS).

Hence angle ABC = angle ADC



BM = MC (M is the midpoint of BC)

AM = AM (common to both triangles)

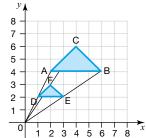
Triangles ABM and ACM are congruent (SSS).

Hence angle AMB = angle AMC

Angle $AMB + angle AMC = 180^{\circ}$, so angle

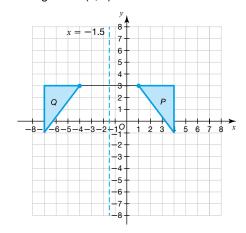
$$AMB = \frac{180}{2} = 90^{\circ}$$

1 a, b

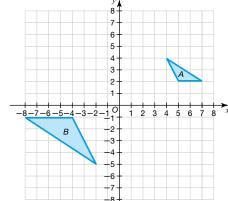


c Enlargement, scale factor 2, centre of enlargement (0, 0)

2



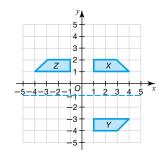
3



4 Translation by $\binom{5}{-4}$

Invariance and combined transformations

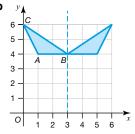
a, b, c



d Reflection in the *y*-axis

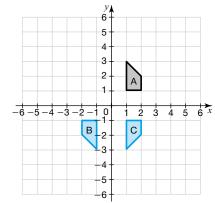
For full worked solutions, visit: www.scholastic.co.uk/gcse

2 a, b



c (3, 4)

3 a, b



c A reflection in the *x*-axis.

3D shapes

1

Shape	Number of vertices	Number of faces	Number of edges
Triangular-based pyramid	4	4	6
Cone	1	2	1
Cuboid	8	6	12
Hexagonal prism	12	8	18

2 V = 16, F = 10, E = 24; V + F - E = 16 + 10 - 24 = 2

Parts of a circle

- 1 a radius c minor arc e minor sector
 - **b** chord **d** minor segment

Circle theorems

- **1** a angle ACB = angle YAB = 30° (alternate segment theorem)
 - **b** angle $ABC = 90^{\circ}$ (angle in a semicircle)
 - **c** angle $ADC = 90^{\circ}$ (angle in a semicircle)
- **2** a angle $OAX = 90^{\circ}$ (angle between tangent and radius)
 - **b** angle $AOX = 180 (90 + 30) = 60^{\circ}$ (angle sum in a triangle)
 - **c** angle ACB = 30° (angle at centre twice angle at circumference)
- **3** a angle $ADB = 40^{\circ}$ (angles on same arc)
 - b angle EDB = angle EDA + angle ADB = 50 + 40 = 90°
 So BD is a diameter of the circle (angle between tangent and diameter is 90°)

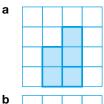
angle $BAD = 90^{\circ}$ (angle in a semicircle)

4 Angle ACB = 46° (angles bounded by the same chord in the same segment are equal)

Angle $ABC = 90^{\circ}$ (angle in a semi-circle is a right-angle) Angle $BAC = 180 - (90 + 46) = 44^{\circ}$ (angles in a triangle add up to 180°)

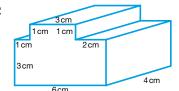
Projections

l a



С

2



Bearings

- **1** 245°
- **2 a** 225°
- **b** 320°

Pythagoras' theorem

- **1** a 10.3 cm (to 1 d.p.)
- **b** 8.8 cm (to 1 d.p.)
- 2 height = 10.91 cmarea = 54.54 cm^2
- 3 $x = 8.12 \,\mathrm{cm}$ (to 2 d.p.)
- 4 Let the perpendicular height of the triangle = h

Area of triangle =
$$\frac{1}{2} \times 14 \times h$$

Hence
$$\frac{1}{2} \times 14 \times h = 90$$

Solving gives
$$h = 12.8571 \,\mathrm{cm}$$

By Pythagoras' theorem, $AC^2 = 7^2 + 12.8571^2$ Solving gives AC = 14.6 cm (3 significant figures)

Area of 2D shapes

- 1 £1596
- $2 \frac{5}{8}$
- 3 a area of semicircle $=\frac{1}{2} \times \pi \times x^2 = \frac{\pi x^2}{2}$ area of rectangle $= 4x \times 2x = 8x^2$ area of shape $=\frac{\pi x^2}{2} + 8x^2 = x^2(8 + \frac{\pi}{2})$
 - **b** $x(10 + \pi)$

Volume and surface area of 3D shapes

- 1 $r = \sqrt{\frac{3}{2}a^3}$
- **2 a** 12.5 m² **b** 62.5 m³ **c** 10 hours (to nearest hour)
- 3 1200 m² (to 3 s.f.)

Trigonometric ratios

- 1 a 17.32 cm (to 2 d.p.)
 - **b** 9.19 cm (to 2 d.p.)
- **2** a 73.3° (to 0.1°)
 - **b** 50.3° (to 0.1°)
- 3 $\sin \theta = \frac{b}{c}$ and $\cos \theta = \frac{a}{c}$
 - $\frac{\sin\theta}{\cos\theta} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{b}{c} \times \frac{c}{a} = \frac{b}{a} = \tan\theta$
- 4 a 13.60 cm (to 2 d.p.)
 - **b** 63.8° (to 1 d.p.)
 - c 8.56 cm (to 2 d.p.)

Exact values of sin, cos and tan

- 1 $\sqrt{3} \tan 30^\circ + \cos 60^\circ = \sqrt{3} \times \frac{1}{\sqrt{3}} + \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2}$ a = 3, b = 2
- 2 $\sin 30 = \frac{1}{2}$ and $\cos 30 = \frac{\sqrt{3}}{2}$ $\sin^2 30 = \frac{1}{4}$ and $\cos^2 30 = \frac{3}{4}$ $\sin^2 30 + \cos^2 30 = \frac{1}{4} + \frac{3}{4} = 1$

Sectors of circles

- 1 47.7° (to 1 d.p.)
- **a** 7.99 cm **b** 3.94 cm²
- Radius $OA = 10.3 \, \text{cm}$
- Area of sector $= 109 \, \text{cm}^2$

Sine and cosine rules

- 1 a 15 cm²
 - **b** 15.5 cm (to 3 s.f.)
- **2** 27.7° (to 0.1°)
- 3 a 38.6°
 - **b** If angle XZY is not obtuse, then angle XYZ can be obtuse. An alternative answer would be 141.4°.

Vectors

- **1 a** $\binom{-6}{8}$ **b** $\binom{2}{0}$
- 2 a b a
- **b** $\frac{3}{5}$ (**b a**) **c** $\frac{1}{5}$ (2**a** + 3**b**)
- 3 a -a 3b
 - **b** $\overrightarrow{BM} = \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(-\mathbf{a} 3\mathbf{b})$

$$\overrightarrow{PM} = \overrightarrow{PA} + \overrightarrow{AB} + \overrightarrow{BM} = 2\mathbf{b} + \mathbf{a} + \frac{1}{2}(-\mathbf{a} - 3\mathbf{b})$$

$$=\frac{1}{2}\mathbf{b}+\frac{1}{2}\mathbf{a}=\frac{1}{2}(\mathbf{a}+\mathbf{b})$$

$$\overrightarrow{MD} = \overrightarrow{MB} + \overrightarrow{BD} = -\frac{1}{2}(-\mathbf{a} - 3\mathbf{b}) + \mathbf{a} = \frac{3}{2}\mathbf{a} + \frac{3}{2}\mathbf{b}$$

= $\frac{3}{2}(\mathbf{a} + \mathbf{b})$

 \overrightarrow{PM} and \overrightarrow{MD} have the same vector part (**a** + **b**), therefore they are parallel. Both lines pass through M and parallel lines cannot pass through the same point unless they are the same line. Hence PMD is a straight line.

Review it!

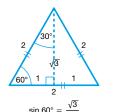
1 Angle $ADC = (180 - x)^{\circ}$ (opposite angles of cyclic quadrilateral)

Angle $ADE = y^{\circ}$ (alternate segment theorem)

Angle
$$CDF = 180 - \text{angle } ADE - \text{angle } ADC$$

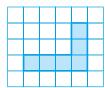
= $180 - y - (180 - x) = (x - y)^{\circ}$

2



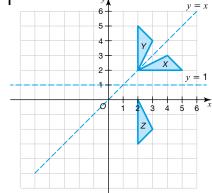
$$\cos 45^{\circ} + \sin 60^{\circ} = \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}$$
$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{3}}{2}$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}$$
$$= \frac{1}{2}(\sqrt{2} + \sqrt{3})$$

- **3** 5, 12 and 13
- а



- 5 а
 - b

b



- **b** ii (2, 2)
- See triangle Z on grid above
- Rotation of 90° clockwise about (1, 1)
- 19.4 km (to 1 s.f.)
 - 280°

Probability

The basics of probability

- **2** a 0
 - b

Probability experiments

- 1 a 0.21 (to 2 d.p.)
 - **b** 0.14 (to 2 d.p.)
 - c Sean is wrong. 120 spins is a small number of spins and it is only over a very large number of spins that the relative frequencies may start to be nearly the
- **2** a 0.04
- **b** 600 cans
- 45 apples

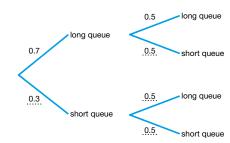
The AND and OR rules

- 1 a Independent events are events where the probability of one event does not influence the probability of another event occurring. Here it means that the probability of the first set of traffic lights being red does not affect the probability of the second set being red.
 - 0.06
- **c** 0.56

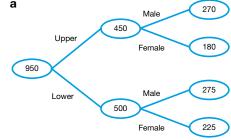
Tree diagrams

- - $=\frac{7}{15}$
- 20 balls
- 3 а
- Check in

Security check



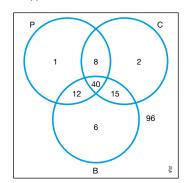
- 0.15 b
- 0.85



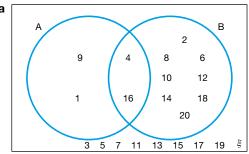
b $\frac{109}{190}$ or 0.57

Venn diagrams and probability

- i {1, 3, 4, 5 8, 9, 10, 11}
 - ii {8, 9}
 - {2, 5, 6. 10, 13}
 - b
- 2



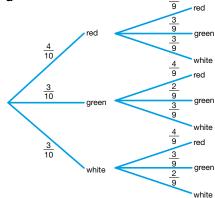
- 10 21 а
- b
- С
- 3 а



b $P = \frac{8}{20} = \frac{2}{5}$

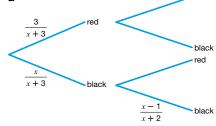
Review it!

1 а



- b

2 a



red

P(two black) =
$$\left(\frac{x}{x+3}\right) \times \left(\frac{x-1}{x+2}\right) = \frac{7}{15}$$

$$15x(x-1) = 7(x+3)(x+2)$$

$$15x^2 - 15x = 7x^2 + 35x + 42$$

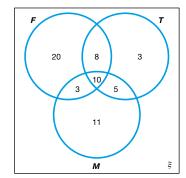
$$8x^2 - 50x - 42 = 0$$

$$4x^2 - 25x - 21 = 0$$

b 10 balls

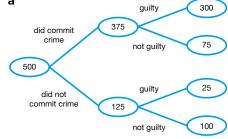
c
$$\frac{7}{15}$$

3



- a $\frac{11}{60}$
- **b** $\frac{15}{29}$

4 a



- **b** $\frac{13}{20}$
- **c** $\frac{1}{5}$

Statistics

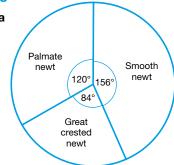
Sampling

1 26

2 11

Two-way tables, pie charts and stem-and-leaf diagrams

1 a



b No. The other pond might have had more newts in total. The proportion of smooth newts in the second pond is lower, but there may be more newts.

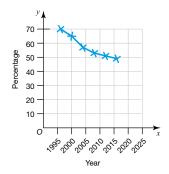
2

2	2	2	3	3	4			
	3	0	0	1	3	5	5	6
	4	0	1	2	5	7		
				k	ey 2 2	repres	ents 22	2 mins

Line graphs for time series data

- **1 a** 926, 904, 885, 854
 - **b** The trend is decreasing sales.

2 a



- **b** The percentage of people using the local shop is decreasing.
- **c** 44%
- **d** There are no points so you would be trying to predict the future. There may be a change of ownership/or a refurbishment making it more popular. It could even close down before then.

Averages and spread

- **1** 13.5 years
- 2 Mean = $\frac{\text{total number of marks}}{\text{number of students}}$

Total mark for boys = $50 \times 10 = 500$

Total mark for girls = $62 \times 15 = 930$

Total mark for class = 500 + 930 = 1430

Mean for class = $\frac{\text{total number of marks}}{\text{number of students}} = \frac{1430}{25} = 57.2\%$

Joshua is wrong, because he didn't take account of the fact that there was a different number of boys and girls.

For full worked solutions, visit: www.scholastic.co.uk/gcse

3 a

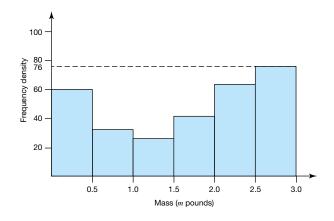
Cost (£C)	Frequency	Mid-interval value	Frequency × mid-interval value
0 < <i>C</i> ≤ 4	12	2	24
4 < C ≤ 8	8	6	48
8 < <i>C</i> ≤ 12	10	10	100
12 < <i>C</i> ≤ 16	5	14	70
16 < <i>C</i> ≤ 20	2	18	36

b £7.51 (to nearest penny)

Histograms

•

Mass (m pounds)	Frequency
$0.0 < m \le 0.5$	30
$0.5 < m \le 1.0$	16
1.0 < <i>m</i> ≤ 1.5	13
1.5 < <i>m</i> ≤ 2.0	21
2.0 < <i>m</i> ≤ 2.5	32
$2.5 < m \le 3.0$	38



Cumulative frequency graphs

b 13 minutes

c i 17.5 minutes

ii 9 minutes

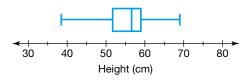
iii 8.5 minutes

d 5.6% (to 1 d.p.)

Comparing sets of data

1

	Height (cm)
Lowest height	38
Lower quartile	52
Median	57
Upper quartile	59
Highest height	69



2 a i 120 marks

ii 65 marks

iii 75 marks

iv 51 marks

v 24 marks

b For the girls: median mark = 74 marks, upper quartile = 89 marks, lower quartile = 58 marks and interquartile range = 31 marks

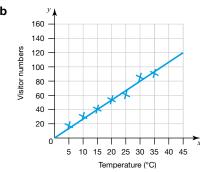
Comparison:

The median mark for the girls is higher (or higher average mark).

The interquartile range is lower for the boys showing that their marks are less spread out for the middle half of the marks.

Scatter graphs

1 a, b



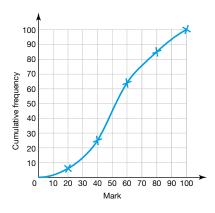
c 71 visitors

d i 120 visitors

ii There are no points near this temperature so you cannot assume the trend continues.

Review it!

- 1 a 36 students
- **c** $4 < a \le 6$
- **b** £5.83 to the nearest penny
- 2 a



- **b** 54
- **c** 40
- 3 a D (the median mark is furthest to the right.)
 - **b** C (the largest gap between the quartiles.)
 - **c** D as the median mark is the highest and also the interquartile range is small which means 50% of pupils got near to the median mark.
- **4 a** The sample needs to be representative of people living on the street: male/female, adults/children.
 - **b** 120 people

For full worked solutions plus
Higher Maths Edexcel
Practice Paper (Calculator 2)
questions and answers
visit www.scholastic.co.uk/gcse