GCSE Physics (AQA 8463)

Higher Tier

Mark scheme

Introduction

The information provided for each question is intended to be a guide to the type of answers students may produce, but can be neither exhaustive nor prescriptive. Award marks according to your professional judgement for all appropriate responses.

Disclaimer

- These mark schemes and exemplar answer content are entirely the work of the question author and have not been produced by, reviewed by or endorsed by AQA.
- Where marks are suggested and levels mapped to particular styles or features of answers, these are intended for guidance only and cannot reflect the full examination marking process, which involves moderation and alignment of level boundaries across a full, national student cohort that cannot be determined from a standalone product such as this set of Practice Papers.
- Therefore, mark allocation, mark totals, suggested levels and overall assessments of performance as found in these Practice Papers and Mark Schemes represent only a limited guide to possible outcomes, and are not a reliable indicator of actual performance.

Information for teachers

1. General

The mark scheme for each question gives:

- the marks available for each part of the question
- the total marks available for the question
- the correct answer or, if multiple correct answers are possible, a typical correct answer with variations
- extra information to help with making decisions about how many marks to award
- the Assessment Objective(s) from the GCSE Specification that the part question is intended to cover.

The 'extra information' is aligned to the appropriate answer and is only intended for consideration with that particular part of the answer.

2. Marking of lists

For question parts where a set number of responses is requested, all possible correct answers are stated. Each correct response should be awarded a mark as indicated, up to a maximum for the question part as stated on the question paper and as written in this marks scheme.

If a student has provided more than the set number of responses requested, the principle to be followed is that 'right + wrong = wrong'. Each error or contradictory response negates each correct response. If the number of errors and contradictions equals or exceeds the number of correct responses, no marks can be awarded for that part of the question.

3. Use of symbols and formulae

If an accepted scientific symbol or formula is written instead of a required chemical name or unit, award full marks if the symbol or formula is correct and if, in the context of the question, the response is appropriate.

4. Calculations

Award marks for each correctly completed stage of a calculation, as students are instructed to show their working.

Full marks can be given for a correct numerical answer (including units), even though no working is shown.

5. Interpretation of 'it' and 'them'

Answers using the word 'it' or 'them' should be awarded marks only if it is clear that the 'it' or 'them' refers to the correct subject.

6. Errors carried forward

An error in the answers to a structured question should be penalised once only.

Allowances for errors carried forward are usually restricted to calculation questions. Where such allowances are permissible, the mark scheme includes a statement such as 'allow ecf'.

7. Phonetic spelling

The phonetic spelling of correct scientific terminology should be awarded marks unless there is a possible confusion with another technical term.

8. Brackets

(.....) in this marks scheme indicates information that is not essential for a mark to be awarded, but is included to help you identify the sense of the required answer.

9. Ignore / insufficient / do not allow

'Ignore' or 'insufficient' are used in this marks scheme to indicate information that is irrelevant to the question or not enough to gain the mark. Further correct amplification could gain the mark.

'Do not allow' indicates that this is a wrong answer which, even if the correct answer is also given, still means that the mark should not be awarded.

'Level of response' marking instructions

'Level of response' mark schemes are broken down into levels, each of which is given a descriptor. The descriptor for a level shows the average performance for that level. There are marks allocated to each level.

Before applying the mark scheme to a student's answer, read through the answer and annotate it to show the qualities that are being looked for. Then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a 'ladder' to see whether the answer meets the qualities given in the descriptor for that level. If the answer meets the lowest level, move up to the next level and repeat the assessment until you find a match between the descriptors and the answer.

When assigning a level, you should look at the overall quality of the answer and not be distracted by small details of the answer where the student may not have performed quite as well as their overall performance. If an answer covers different aspects of different levels of the mark scheme, use a 'best fit' approach: for example, if a response is predominantly level 2 with a small amount of level 3 material, place it in level 2 but award a mark near the top of the level because of the level 3 content.

Step 2 Determine a mark

The descriptors within each level can help with this, along with the exemplar answers or extra information given. Indicative content is provided as a guide. It is not exhaustive and you should credit other valid points in the answer. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

Ignore any responses that are irrelevant. However, only award full marks if there are no incorrect or contradictory responses.

An answer that contains nothing of relevance to the question must be awarded no marks.

Read back through the full answer as you apply the mark scheme, so as to clarify points and assure yourself that the level and the mark are appropriate.

Paper 1						
	Question 1					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.		
01.1	Level 3: detailed method with d how to minimise them	etails of sources of errors and	5	AO3 WS2.2,		
	Level 2: detailed method with s discussion potential sources of e	ome omissions (e.g. no error)	3–4	4.3.1.1		
	Level 1: some relevant points m procedure	nade to outline a simple	1–2			
	No relevant content		0			
	Indicative content Setting scale to zero before measuring mass of rods. Measuring diameter of rods in at least two different points and calculating a mean.					
	Use ruler to measure length of ro	od.				
	Calculate volume of rod.					
	Discuss potential difficulties acc slightly bent, etc.	urate readings, e.g. rods may be				
01.2	Correct use of standard form		1	AO2		
	Density = 0.1788 / 0.000 02		1	WS4.4 4 3 1 1		
	= 8940		1	т.0.1.1		
01.3	5.24 mm		1	AO1 WS2.6		
TOTAL			9			

Question 2					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
02.1	$\Delta E = mc\Delta\theta \text{ or word equation}$ $-\Delta\theta = 36.7 - 21.4 = 15.3^{\circ}$ $\Delta E = 0.000 61 \times 140 \times 15.3$ $= 1.3 \text{ J}$		1 1 1 1	AO2 4.1.1.3 4.3.2.2	
02.2	 As the thermometer is in contact with the body, there is a temperature difference between the body and the mercury in the thermometer This causes an energy transfer between the body and the mercury The atoms of mercury begin to move faster The mercury expands and climbs along the capillary tube in the thermometer 		1 1 1 1	AO2/1 4.3.3.1	
TOTAL			8		

Question 3				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
03.1	protons neutrons		1 1	AO1 4.4.1.1
03.2	4		1	AO1 4.4.1.1
03.3	Tick in the box with the third option: (✓) Atoms that have different mass number, but the same atomic number		1	AO1 4.4.1.2
03.4	7 protons 7 electrons 16 – 7 = 9 neutrons		1 1 1	AO1 4.4.1.2
TOTAL			7	
	Q	uestion 4		
04.1	Tick in the box with the second option: (✓) A nucleus of helium (two protons and two neutrons)		1	AO1 4.4.2.1
04.2	Tick in the box with the third option: (✓) Beta particles or gamma rays		1	AO1 4.4.2.1
04.3	Tick in the box with the last option: (✔) Any of these is possible		1	AO1 4.4.2.3
04.4	$^{90}_{38}$ Sr $\rightarrow ^{90}_{39}$ Y + $^{0}_{-1}$ e		2	AO2 4.4.2.2
TOTAL			5	

Question 5					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
05.1	Level 3: detailed description of chain reaction and function of control rods, including absorption of neutrons to reduce rate of emitted neutrons causing fissions, or ratio 1:1		5–6	AO2 4.4.4.1	
	Level 2: detailed description of chain reaction and some understanding of control rods shown.				
	Level 1: Simple description of c	hain reaction, or control rods.	1–2		
	No relevant content.		0		
	 Indicative content Neutron absorbed by nucleus of nuclear fuel (uranium/ plutonium). Nucleus splits into two smaller nuclei releasing energy and 2–3 further neutrons. Fission neutrons can fission other nuclei and the reaction progresses into a chain reaction. Control rods are made of cadmium or boron. They can absorb neutrons without undergoing fission. Rods are inserted in the reactor core deep enough to cause one further fission for each nucleus that splits/ to control the reaction. 				
05.2	 Advantage: Very high power output Disadvantage: Nuclear waste difficult to store safely Large decommissioning costs Risks of nuclear disasters, e.g. Fukushima/Chernobyl 		1	AO1 4.1.3 4.4.2.4	
05.3	 Tick in the box with the third option: (✓) Nuclear fusion is the merging of two light nuclei to form a heavier nucleus. The mass of the product nucleus is smaller than the combined mass of the two lighter nuclei. 		1	AO1 4.4.4.2	
TOTAL			9		

Question 6					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
06.1	When the spring is fully compressed the elastic potential energy store is full . When the toy has reached its highest point the gravitational potential energy store is full and the elastic potential energy store has emptied. Some of the initial energy has increased the thermal energy store associated with the surroundings.		4	AO1 4.1.1.1	
06.2	Convert 3 cm to 0.030 m Use $E_{e} = \frac{1}{2} ke^{2}$ $= \frac{1}{2} 70 \times 0.030^{2}$ = 0.0315 J		1 1 1 1	AO2 4.1.1.2	
06.3	Convert 6 g to 0.006 kg Use $E_p = mgh$ = 0.006 × 9.8 × 0.48 = 0.0282 J		1 1 1 1	AO2 4.1.1.2	
06.4	Efficiency = 0.0282 / 0.0315 = 0.90 (or 90%)	Allow ECF	2	AO2 4.1.2.2	
TOTAL			14		
	Q	uestion 7			
07.1	correct labelled scales correct plots curve of best fit	Remove 1 mark for each incorrect plot	1 2 1	AO2 WS3.1, WS3.3 4.4.2.1 4.4.2.3	
07.2	Tick in the box with the first option (✓) The time it takes for the num sample to halve	on: ber of nuclei of the isotopes in a	1	AO1 4.4.2.3	
07.3	Accept 7 or 8 years	Accept correct reading from own graphs with incorrect plots	1	AO2 WS3.2 4.4.2.3	
07.4	Results will be more accurate because the sample of data has increased and the curve will become smoother		1 1 1	AO3 WS3.3, WS3.5 4.4.2.3	
TOTAL			9		

Question 8				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
08.1	Tidal Wave power		1	AO1 4.1.3
08.2	Renewable energy resources can be replenished Non-renewable energy resources will run out when their reserve has been used up		1	AO1 4.1.3
08.3	 Advantages: Natural gases are less polluting than oil or coal Easy to transport Not dependent on weather conditions Disadvantages: Release greenhouse gases Non-renewable 		2	AO1 4.1.3
TOTAL			8	
	Q	uestion 9		
09.1			1	AO1 4.2.1.1
09.2	10.5 to 36 kΩ	Accept 10 kΩ	2	AO1 WS3.5 4.2.1.4
09.3	38 °C generates a resistance of 6 k Ω in the thermistor Rearrange to $I = V/R$ I = 3 / 6000 = 0.0005 A = 0.5 mA	Accest 40, 70	1 1 1 1	AO2 4.2.1.3
09.4	50–70 °C	Accept 46–70	1	AO2 WS3.5 4.2.1.4
TOTAL			8	

Question 10						
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.		
10.1	Convert 63 mA to 0.063 A $R_1 + R_2 = 230 + 45 = 275 \Omega$ $I_1 = V / (R_1 + R_2) = 6 / 275 = 0.022 \text{ A}$ $I_2 = 0.063 \leftrightarrow 0.022 = 0.041 \text{ A}$ $R_3 = V / I_2 = 146 \Omega$		1 1 1 1	AO3 4.2.1.3 4.2.2		
TOTAL			5			
	Question 11					
11.1	$E_{\rm p} = 5.5 \times 9.8 \times 52$ = 2803 J		1 1	AO2 4.1.1.2		
11.2	$E_{p} = E_{k} = \frac{1}{2} mv^{2}$ $2803 = \frac{1}{2} 5.5 \times v^{2}$ $v = \sqrt{\frac{2 \times 2803}{5.5}}$ $= 32 \text{ m/s}$		1 1 1 1	AO3 4.1.1.2		
11.3	No energy was wasted due to air resistance		1	AO3 4.1.2.1		
TOTAL			7			

Question 12				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
12.1	Gurinder's jumper rubbed against the seat of his car.		1	AO2 4.2.5.1
	Electrons transferred from the fabric of the seat to the jumper (or the other way round).		1	
	When Jake's hand approaches the metal door a large potential difference is generated between the hand and the door.		1	
	The p.d. is large enough to cause a spark to jump from Jake's hand to the metal door.		1	
12.2	1 mark for radial field		2	AO1 4.2.5.2
TOTAL	I mark for correct direction		6	
	Qı	uestion 13		
13.1	Arrows of different size on each ball and different direction on each ball		1	AO1 4.3.3.1
13.2	Random direction		1	AO1
	and random speed		1	4.3.3.1
13.3	Tick box against first option: (✓) The total kinetic energy and potential energy of all the particles of gas		1	AO1 4.3.2.1
TOTAL			5	

Paper 2					
Question 1					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
01.1	correct means accept 49 100 150 200 250 or 49 99.5 150 199.5 249.5 correct sig figs	If 2nd row is given only 1 mark max can be awarded. Penalise any incorrect rounding. Whole numbers only. Answers must all be as in the first row.	1	AO2 4.5.3 8.2.6 MS 2 b&f AO2 MS 2a	
01.2	Suitable x- and y-axis scale 5.0 4.0 4.0 2.0 5.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 5.0 5.0 4.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Must use more than 50% of each axis.	3	AO2 4.5.3 8.2.6 MS4a&c AO2	
	(Straight line of best fit that goes through the origin.)	It must be drawn with a ruler	1	AO3	
01.3	It is linear, or Mean extension is (directly) proportional to weight.	(or the other way round)	1	AO3 4.5.3 8.2.6	
01.4	Suitable reference lines drawn on the graph. $k = \frac{F}{e} = \frac{5.0}{250} = 0.02$ N/mm		1	AO3 4.5.3 8.2.6 MS4.a AO2	
TOTAL			10		

Question 2				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
02.1	ASteady speed (fast)BAcceleratingCDeceleratingDSteady speed (slow)EStationary	1 mark for each correct response	5	AO1 4.5.6.1.4
02.2	45 m	Unit not required	1	AO3 4.5.6.1.4
02.3	$\frac{15}{2.5} = 6$ m/s	If 15 m seen and answer incorrect 1 mark only. or If 2.5 s seen and answer incorrect award 1 mark only. (both may not apply separately)	2	AO3 4.5.6.1.2 4.5.6.1.4 7.4.a&d AO1 4.5.6.1.2 4.5.6.1.2 4.5.6.1.4 7.4.a&d
TOTAL			9	

Question 3					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
03.1	$f = \frac{v}{\lambda} = \frac{3.0 \times 10^8}{100}$	Correct rearrangement or correct substitution required	1	AO2 4.6.1.2 MS 1c,3b,c	
	$= 3.0 \times 10^{6}$	Accept in standard form or as 3 000 000 Or 3.0 M	1	AO2	
	Hz	Penalise incorrect use of capitals or lowercase.	1	AO1	
TOTAL			3		

Question 4				
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.
04.1	small region receding		1	AO1 4.8.2
04.2	Level 3: A detailed and coheren The student gives examples that demonstrate deep knowledge. T between clearly identified, releva	t explanation is provided. argue a strong case and he student makes logical links ant points.	5–6	2 × AO2/2 4.8.2
	Level 2: An attempt to link the c and the results with differences b The student gives examples of h support the big bang theory. The	3–4	1 × AO1/1 1 × AO2/2	
	Level 1: Simple statements are made that the big bang can be explained by red shift observations. The response may fail to make logical links between the points raised.			2 × AO1/1
	No relevant content		0	
	 Indicative content Red shift is where spectral line move to the red end of the spectral distant galaxies show a red. All distant galaxies show a red. Greater red shift means the distingerater recessional speed/ is red. More distant galaxies show grones this would suggest that mo away faster than closer ones. this would suggest that mo from each other and the Universe started from an initia. Where all matter was concentred. At some point in the past the trunderwent a period of very rap Big Bang. 	es/absorption/ emission lines ectrum. I shift. stant galaxy or star has a noving away faster. eater red shift than nearer re distant galaxies are moving st galaxies are moving away erse is expanding. bolate backwards, then the I point. rated in one tiny point. iny point had an explosion/ bid expansion. This is called the		
TOTAL			8	

Question 5					
QUESTION	ANSWERS		EXTRA INFORMATION	MARK	AO / SPEC. REF.
05.1	Velocity² Velocity² v² (m/s)² v² (m/s)² 2.0 1.96 4.0 4.0 5.8 5.76 7.8 7.84 9.6 9.61		 1st mark awarded for correctly calculated (velocity)² value. 2nd mark awarded for correct significant figures as per first column. 1 mark max for (velocity)² as per second column. Zero marks if any answers contain rounding errors. 	1	AO2 MS2.b&f WS 4.6
05.2	Correctly plotted points Suitable line of best fit drawn. 10 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		Penalise any point out by more than +/- 1 small square. Straight line drawn with a ruler through the origin.	2	AO2 MS 4 a–c AO3
05.3	Suitable reference Gradient is 20 m/s	e lines drawn s ²	Unit not required Accept value in the range 19–21.	1	AO2 MS 4.b

Question 5					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
05.4	$v^2 = 2as$ and linking to y = mx + c Gradient $= \frac{20}{2} = 10$ m/s ²	Or accept gradient = 2a Award mark for answer with no workings accept value from question part 5.3 divided by 2.	1 1	AO2 MS 4.b AO2 AO1	
05.5	Any two from: Repeat readings but could alternatively comment that repeats aren't necessary as there are no significant anomalies. Use a magnetic switch to drop the ball to ensure that initial speed is zero. Take readings over a larger range of heights. Take more than 5 readings.	1 mark per correct response	2	AO3 WS 2.7	
TOTAL	smaller intervals.		12		

Question 6						
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.		
06.1	Level 3: A detailed and coheren student gives examples that den student makes logical links betw points.	5–6	4.8.1.2 2 × AO2/2			
	Level 2: An explanation is provided and coherent but that de knowledge. The logic used may	ded that has elements that are o not always demonstrate deep not be clear at all times.	3–4	1 × AO1/1 1 × AO2/2		
	Level 1: Simple statements are to make logical links between the	made but the response may fail e points raised.	1–2	2 × AO1/		
	No relevant content		0			
	 Indicative content A cloud of dust and gas called a nebula is pulled together by gravity. Temperature increases and this stage is called a protostar. Temperature and pressure are not high enough for fusion to take place. At very high temperature and pressure fusion takes place. Fusion releases energy. Outward radiation pressure balances inward gravitational pressure this stage is called a main sequence star. Main sequence star lasts for billions of years. Once hydrogen has been used up star expands to a red giant. Then it contracts to a (dense) white dwarf. 					
06.2	(Instead of forming a red giant) it	would form a red super giant.	1	AO3 4.8.1.2		
	Instead of forming a white dwarf explosion. Then (depending on mass) it wou	there would be supernova uld go on to form either a	1			
	neutron star or a black hole.	5				
TOTAL			9			

Question 7					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
07.1	$p_a = m_a \times v_a = 900 \times 18$ = 16 200 kg m/s $p_b = m_b \times v_b = 700 \times -10$ = -7000 kg m/s	Right has been considered as positive displacement. Accept opposite provided rest of answer is consistent. If numbers 16 200 and 7000 are seen award first two marks.	1	AO1 WS 1.2 MS 3b, c 4.5.7.1 4.5.7.2	
	$p_{total} = p_a + p_b = 16\ 200 - 7000$ = 9200 kg m/s	Award 3 marks for correct calculation of 9200 even if working is not clear.	1	AO1	
		Accept N s	1	AO1	
07.2	mass _{total} = mass _a + mass _b = 900 + 700 = 1600 kg $V_{a+b} = \frac{p_a + p_b}{m_{a+b}} = \frac{9200}{1600}$	Award mark if 1600 is seen Award 1 mark for stating that momentum before = momentum after if other marks not awarded.	1	AO2 WS 1.2 MS 3b, c 4.5.7.1 AO2 4.5.7.2	
	5.8 m/s	Accept 6 m/s and do not penalise significant figures.	1	AO2	
07.3	Force experienced is proportional to the rate of change of momentum.	Accept correct use of the equation $F = \frac{m\Delta v}{\Delta t}$	1	AO1 4.5.7.3 MS 3b.c WS 1.2,4	
	Air bags and crumple zones Increase the collision time in an accident. This reduces the force to a (safer) level that does not cause serious injury.	Do not award any marks for response that refer to cushioning the impact or absorbing forces.	1	AO3	
TOTAL			10		

Question 8					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
08.1	The motor effect		1	AO1 4.7.2.2	
08.2	a) motion or force	Accept thrust	1	AO1 4.7.2.2	
	b) current (conventional)		1		
	c) field direction (N to S)		1		
08.3	F = BIL	Stated in words or symbols.	1	AO2	
	40 cm = 0.4 m	Correct conversion of cm to m. Award mark if seen in next stage.	1	4.7.2.3 MS 3b, c	
	$B = \frac{F}{IL} = \frac{0.3}{5 \times 0.4} = 0.15$	Correct substitution	1	AO1	
	0.15 T or tesla	Unit required	1		
TOTAL			8		
	Q	uestion 9			
09.1	horizontal line from object to	Allow the construction lines	1	AO3	
	lens line from top of object through centre of lens to intersection point	through focal point on object side and parallel line to principal axis as alternative to mark points 1 and 2	1	AO2	
	line from top of lens passing through focal point		1		
	intersect of at least two lines		1		
	image drawn with arrow		1		
	4.5 cm	Accept in range 4.25–4.75 cm	1		
	object (Gemian) [1] 2(1) 5cm 2(1) 5cm 2(1) 5cm 2(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				
09.2	1 mark per correct response:		2	AO1	
	real				
	enlarged / magnified				
	inverted				
TOTAL			8		

Question 10					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
10.1	$P = VI \text{ so } I = \frac{P}{V}$ $= \frac{5 \times 10^{6}}{2.3 \times 10^{3}}$ $= 2.2 \times 10^{3} \text{ A or } 2.2 \text{ kA}$	Award 2 marks if correct answer stated. Accept any answer that rounds to 2.2 Accept 2200 or number that rounds to 2200	1	AO1 4.2.4.3 4.7.3.4 MS 3b,c AO2	
10.2	Increasing voltage causes current to go down. A reduced current causes less power losses in transmission.	Accept reference to $V_s \times I_s = V_p \times I_p$ If explained for first mark. Accept reference to $P = I^2 R$	1	AO2 4.2.4.3 4.7.3.4 AO3	
10.3	$V_{s} \times I_{s} = V_{p} \times I_{p}$ $675 \times 10^{3} \times I_{s} = 2.3 \times 10^{3} \times 2.2 \times 10^{3}$ $I_{s} = \frac{2.3 \times 10^{3} \times 2.2 \times 10^{3}}{675 \times 10^{3}} = 7.5 \text{ A}$	Award 2 marks if answer is correct	1	4.2.4.3 4.7.3.4 MS 3b,c AO2	
TOTAL			6		
	Quest	ion 11			
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
11.1	correctly drawn normal ray bending to normal in block ray bending away from normal on leaving block glass correctly drawn normal ray bending away from normal on	Ray must be roughly parallel to original incident ray.	1 1 1 1	AO2 AO2	
TOTAL	entering air glass air		5		

Question 6					
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.	
12.1	In a longitudinal wave particles / the wave vibrates parallel to the wave direction / energy transfer.		1	AO1 4.6.1.1	
	In a transverse wave the particles vibrate perpendicular / at right angles to the wave direction / energy transfer.		1		
12.2	Level 3: A detailed and coherent explanation is provided. The student gives examples that demonstrate deep knowledge. The student makes logical links between clearly identified, relevant points.			2 × AO2/2 4.8.2	
	Level 2: An explanation is provide detailed and coherent but that de knowledge. The logic used may	3–4	1 × AO1/1 1 × AO2/2		
	Level 1: Simple statements are made but the response may fail to make logical links between the points raised.			2 × AO1/1	
	No relevant content				
	 Indicative content The current in the circuit is constantly changing/varies. The current passes through the coil. The magnetic field of the coil is changing. The coil experiences a force of attraction or repulsion from the permanent magnet. This changes, depending on the current's direction. This pushes the coil in an out. The size of the current affects the size of the force. Larger current causes a greater force (of repulsion or attraction). The changing current causes the coil to vibrate. The vibrating) coil makes the cone vibrate as well. The vibrations of the cone cause the air molecules to move. This movement of the air molecules produces the pressure variations in the air needed for a sound wave. When the air molecules are pushed together this is called a compression. When the air molecules spread out this is called 				
TOTAL			8		

Question 13						
QUESTION	ANSWERS	EXTRA INFORMATION	MARK	AO / SPEC. REF.		
13.1	 mark for each of the following: X-rays cause ionisation of atoms/molecules. Ionisation can lead to cell multiplication that is faster than normal in foetus. Rapid cell multiplication / X-rays increase risk of mutations. Mutations can lead to harmful / abnormal growth of foetus. 	Penalise use of baby instead of foetus but only penalise for one of the marking points.	4	AO1/1		
TOTAL			4			

SCHOLASTIC

Scholastic Education, an imprint of Scholastic Ltd Book End, Range Road, Witney, Oxfordshire, OX29 0YD

Registered office: Westfield Road, Southam, Warwickshire CV47 0RA

www.scholastic.co.uk

© 2018, Scholastic Ltd 1 2 3 4 5 6 7 8 9 8 9 0 1 2 3 4 5 6 7

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

ISBN 978-1407-17638-3

Printed by Bell & Bain Ltd, Glasgow

All rights reserved. This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, hired out or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition, including this condition, being imposed upon the subsequent purchaser.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, other than for the purposes described in the content of this product, without the prior permission of the publisher. This product remains in copyright. Every effort has been made to trace copyright holders for the works reproduced in this book, and the publishers apologise for any inadvertent omissions.

Authors Alessio Bernardelli, Sam Jordan

Editorial Team Aidan Gill, Turnstone Solutions Limited, Lynette Woodward

Cover and Series Design Andrea Lewis

Design Oxford Designers & Illustrators Ltd