Answers

Cell biology

Eukaryotic and prokaryotic cells

- 1 In the cytoplasm as a loop of DNA and maybe as plasmids.
- **2** 5 μm
- 3 2 x 10² nm

Animal and plant cells

1 Award one mark for each correct column:

Sub-cellular	Animal	Plant	Prokaryotic
structure	cells	cells	cells
Nucleus	1	1	
Mitochondria	/	1	
Ribosomes	/	1	✓
Cytoplasm	/	1	✓
Cell membrane	/	1	✓
Chloroplast		1	
Permanent		,	
vacuole		•	
Cellulose cell		1	
wall			

- 2 The more mitochondria there are, the more respiration will be carried out; Active cells need more energy.
- 3 The organism is not a plant; It has some features of plant cells/has chloroplasts/has a cellulose cell wall; It is one-celled/unicellular or plants are multicellular.

Cell specialisation

- 1 A cell that has differentiated in order to carry out a particular function.
- 2 A nerve cell has many dendrites for passing the nerve impulse onto nearby nerve cells.
 - A nerve cell has a long axon for allowing the nerve impulse to travel along a part of the body.
- 3 Sperm cells are not a tissue; as the cells do not work together to carry out their function.
- 4 Xylem cells have no ends and are hollow to make a tube for water to move through; lignin in the cell wall to waterproof and give strength to the cells to stop them collapsing and water leaking out.

Cell differentiation

- 1 Stem cell 2 Embryo; Plant
- 3 Cell divides; cell is exposed to a chemical/hormone; cell changes shape/ acquires new sub-cellular structures.

Microscopy

- Higher magnification; Higher resolution/ resolving power.
- 2 Magnification = $\frac{3 \text{ cm}}{12 \text{ um}}$

 $Magnification = \frac{30\,000 \ \mu m}{12 \ \mu m}$

Magnification = \times 2500

3 Size of the image = Magnification x real size of cell

Size of the image = $12\,000 \times 4 \mu m$ Size of the image = $48\,000 \mu m$

or $4.8 \times 10^{4} \, \mu m$

Culturing microorganisms

- Bacteria divide by binary fission; The bacterium doubles in size and divides into two daughter cells.
- 2 Sterilising equipment; sterilising inoculation loop; taping lids down/ storing Petri dishes upside down; culturing microorganisms at 25°C.
- 3 Cross-sectional area = 3.142 × 200²

 $= 3.142 \times 40.000$

 $= 125680 \mu m^2$

or 1.3 × 10⁵ µm²

Required Practical 1

1 x400

2 5 μm

3 Four of: Place the blood sample onto a slide; Place the slide on the stage; Make sure light is passing through the sample/ light is on; Bring the blood sample into focus by looking down the eyepiece lens and moving the coarse focus; Use a higher magnification objective lens and bring the blood sample into focus using the fine focus.

Required Practical 2

- **1** Bacterial growth is inhibited; due to the action of an antiseptic/antibiotic.
- 2 No unwanted microorganisms on the agar plate which could affect results of investigation; Unwanted microorganisms could make someone iii
- 3 Cross-sectional area = 3.142×0.5^2

 $= 3.142 \times 0.25$

 $= 0.7855 \text{ cm}^2$

Mitosis and the cell cycle

- Growth; repair/replacement of cells; asexual reproduction.
- At the beginning of mitosis, the chromosomes are already doubled inside the nucleus; The nucleus breaks down and the chromosomes line up in the centre of the cell; One set of chromosomes is pulled to each side of the cell to form two new nuclei; The cytoplasm and cell membranes divide to form two identical daughter cells.
- 3 Number of cells = 1×2^{24}

= 16777216 cells

 $= 1.7 \times 10^7$ cells

Stem cells

- 1 In the root/shoot tip.
- Replacing cells; Development of the embryo; Medical treatment; Medical research.
- 3 Take cuttings from the root tip/shoot tip; Use the cuttings to produce many cloned plants; The plants would be genetically identical.

Diffusion

- 1 The movement of particles; from an area of high concentration to an area of low concentration.
- 2 Any two answers from below: Increase the surface area; Increase the temperature; Increase the difference in the concentration of the particles.
- 3 Surface area $4 \times 4 \times 6 = 96 \text{ cm}^2$;

Volume = $4 \times 4 \times 4 = 64$ cm³;

Surface area to volume ratio = 96:64 or 3:2 or 1.5:1

Osmosis

- Water will move out of the animal cell by osmosis; The cell will shrivel and crenate.
- 2 Percentage increase in mass

 $=\frac{(12-8)}{8\times100}$

= 50%

(X and Y axis drawn correctly; X axis labelled as 'Concentration of salt solution (%)' and Y axis labelled as 'Percentage change in mass); points plotted correctly; points connected together with a straight line.)

Required practical 3

- 1 a 6%
 - **b** Mass of potato cube = 5.3 g
 - c Two from: Type of plant tissue/ potato; Mass of original potato; Amount of time spent in sugar concentration; Volume of each sugar concentration.

Active transport

1 The difference between the two concentrations; the greater the difference, the greater the concentration gradient.