Cell biology

Eukaryotic and prokaryotic cells

1 In the cytoplasm as a loop of DNA and maybe as plasmids.
$25 \mu \mathrm{~m}$
$32 \times 10^{2} \mathrm{~nm}$
Animal and plant cells
1 Award one mark for each correct column:

Sub-cellular structure	Animal cells	Plant cells	Prokaryotic cells
Nucleus	\checkmark	\checkmark	
Mitochondria	\checkmark	\checkmark	
Ribosomes	\checkmark	\checkmark	\checkmark
Cytoplasm	\checkmark	\checkmark	\checkmark
Cell membrane	\checkmark	\checkmark	\checkmark
Chloroplast		\checkmark	
Permanent vacuole		\checkmark	
Cellulose cell wall		\checkmark	

2 The more mitochondria there are, the more respiration will be carried out; Active cells need more energy.

3 The organism is not a plant; It has some features of plant cells/has chloroplasts/has a cellulose cell wall; It is one-celled/unicellular or plants are multicellular.

Cell specialisation

1 A cell that has differentiated in order to carry out a particular function.
2 A nerve cell has many dendrites for passing the nerve impulse onto nearby nerve cells.
A nerve cell has a long axon for allowing the nerve impulse to travel along a part of the body.
3 Sperm cells are not a tissue; as the cells do not work together to carry out their function.
4 Xylem cells have no ends and are hollow to make a tube for water to move through; lignin in the cell wall to waterproof and give strength to the cells to stop them collapsing and water leaking out.

Cell differentiation

1 Stem cell 2 Embryo; Plant
3 Cell divides; cell is exposed to a chemical/hormone; cell changes shape/ acquires new sub-cellular structures.

Microscopy

1 Higher magnification; Higher resolution/ resolving power.
2 Magnification $=\frac{3 \mathrm{~cm}}{12 \mu \mathrm{~m}}$
Magnification $=\frac{30000 \mu \mathrm{~m}}{12 \mu \mathrm{~m}}$
Magnification $=\times 2500$

3 Size of the image $=$ Magnification x real size of cell
Size of the image $=12000 \times 4 \mu \mathrm{~m}$
Size of the image $=48000 \mu \mathrm{~m}$
or $4.8 \times 10^{4} \mu \mathrm{~m}$

Culturing microorganisms

1 Bacteria divide by binary fission; The bacterium doubles in size and divides into two daughter cells.
2 Sterilising equipment; sterilising inoculation loop; taping lids down/ storing Petri dishes upside down; culturing microorganisms at $25^{\circ} \mathrm{C}$.
3 Cross-sectional area $=3.142 \times 200^{2}$

$$
\begin{aligned}
= & 3.142 \times 40,000 \\
= & 125680 \mu \mathrm{~m}^{2} \\
& \text { or } 1.3 \times 10^{5} \mu \mathrm{~m}^{2}
\end{aligned}
$$

Required Practical 1

1×400
$25 \mu \mathrm{~m}$

3 Four of: Place the blood sample onto a slide; Place the slide on the stage; Make sure light is passing through the sample/ light is on; Bring the blood sample into focus by looking down the eyepiece lens and moving the coarse focus; Use a higher magnification objective lens and bring the blood sample into focus using the fine focus.

Required Practical 2

1 Bacterial growth is inhibited; due to the action of an antiseptic/antibiotic.
2 No unwanted microorganisms on the agar plate which could affect results of investigation; Unwanted microorganisms could make someone ill.
3 Cross-sectional area $=3.142 \times 0.5^{2}$

$$
\begin{aligned}
& =3.142 \times 0.25 \\
& =0.7855 \mathrm{~cm}^{2}
\end{aligned}
$$

Mitosis and the cell cycle

1 Growth; repair/replacement of cells; asexual reproduction.
2 At the beginning of mitosis, the chromosomes are already doubled inside the nucleus; The nucleus breaks down and the chromosomes line up in the centre of the cell; One set of chromosomes is pulled to each side of the cell to form two new nuclei; The cytoplasm and cell membranes divide to form two identical daughter cells.
3 Number of cells $=1 \times 2^{24}$

$$
\begin{aligned}
& =16777216 \text { cells } \\
& =1.7 \times 10^{7} \text { cells }
\end{aligned}
$$

Stem cells

1 In the root/shoot tip.
2 Replacing cells; Development of the embryo; Medical treatment; Medical research.
3 Take cuttings from the root tip/shoot tip; Use the cuttings to produce many cloned plants; The plants would be genetically identical.

Diffusion

1 The movement of particles; from an area of high concentration to an area of low concentration.
2 Any two answers from below: Increase the surface area; Increase the temperature; Increase the difference in the concentration of the particles.
3 Surface area $4 \times 4 \times 6=96 \mathrm{~cm}^{2}$;
Volume $=4 \times 4 \times 4=64 \mathrm{~cm}^{3}$;
Surface area to volume ratio $=96: 64$ or 3:2 or 1.5:1

Osmosis

1 Water will move out of the animal cell by osmosis; The cell will shrivel and crenate.
2 Percentage increase in mass

$$
\begin{aligned}
& =\frac{(12-8)}{8 \times 100} \\
& =50 \%
\end{aligned}
$$

3

(X and Y axis drawn correctly; X axis labelled as 'Concentration of salt solution (\%)' and Y axis labelled as 'Percentage change in mass); points plotted correctly; points connected together with a straight line.)

Required practical 3

1 a 6\%
b Mass of potato cube $=5.3 \mathrm{~g}$
c Two from: Type of plant tissue/ potato; Mass of original potato; Amount of time spent in sugar concentration; Volume of each sugar concentration.

Active transport

1 The difference between the two concentrations; the greater the difference, the greater the concentration gradient.

