AQA Physics Practice Paper Answers

Paper 1

- 1 **a** Kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$. Or $\frac{1}{2} mv^2$
 - **b** Kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$

Kinetic energy $= 0.5 \times 3 \times 10^2$

- = 150 J or joules
- c Kinetic energy
 = 0.5 × mass × speed²
 Kinetic energy
 - $= 0.5 \times 8 \times 10^2$

d $E_{\rm k} = 0.5 \times m \times v^2$ rearrange to

$$v = \sqrt{\frac{2 \times E_{k}}{m}}$$

[Accept alternative direct substitution method into original equation then rearrange]

$$v = \sqrt{\frac{2 \times 576}{8}} = 12 \text{ m/s}$$

e Speed of dog relative to cat = 12 - 10 = 2 m/s

speed = $\frac{\text{distance}}{\text{time}}$ rearrange to time = $\frac{\text{distance}}{\text{time}}$

time $=\frac{10}{2}=5$ seconds

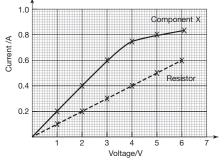
- **2 a** Light as a pathway transferring energy by radiation
 - b Elastic potential
 - c Vibrational/mechanical
 - d Chemical
 - e Kinetic
 - f Gravitational potential
- 3 Bradley increases his chemical store by eating his breakfast; When he is cycling up the hill he is depleting his chemical store; meanwhile he is increasing his gravitational store; and increasing his kinetic store; At the top of the hill his gravitational store is at a maximum; As he descends his gravitational store decreases and his kinetic store increases (If he is free-wheeling his chemical store remains fairly constant); On hitting his brakes at the bottom, a redistribution takes place from his (and the bike's) kinetic energy store to the thermal store of the brake disk, wheels and other parts where friction takes place.

4 **a** Atoms must be approximately the same size; In liquid diagram spaces cannot be any bigger than actual atoms; In gas diagram at least approximately 75% of box should be empty space;

Solid: ordered, regular close together, vibration around a fixed point.

Liquid: close together, disordered, multidirectional weaker bonds.

Gas: far apart, high speed, random motion.


- b Particles/atoms/molecules
- c Keep the marbles together in a uniform/ordered/regular pattern, then vibrate them slightly.
- d Shake the marbles hard/so some of the marbles fall out of the tray; High speed molecules that evaporate are like the marbles that leave the tray; Only the fastest marbles with the highest energy in the kinetic store will leave the tray.
- 5 $E = m \times c \times \Delta \theta$

7

- $E = 0.25 \times 4200 \times 10$
- E = 10500 J or joules

6
$$E_p = mgh$$
 rearrange to:
 $m = \frac{E_p}{g \times h}$; 6 kJ = 6000 J
 $m = \frac{6000}{g \times h}$; = 50 kg

b Resistor straight line with ruler; and filament lamp straight line then curve

c Filament lamp; Device only ohmic within a limited range; Then resistance increases as potential difference (or temperature) increases.

- **d** 10 Ω; evidence of using line of best fit, not single value, to calculate the resistance.
- 8 a $E_p = mgh$

$$E_{\rm p}=2000 imes10 imes90$$

$$E_{\rm p} = 1\,800\,000\,{\rm J}$$

 $E_{\rm p} = 1800 \, \rm kJ$

b $E_p = mgh$ and $E_k = \frac{1}{2}mv^2$ All potential energy store converted to kinetic energy of carriage and passengers; [Expressed in words or as equation]

$$mgh = 0.5 imes m imes v^2$$

$$V = \frac{g \times h}{0.5}$$

9

$$v = \frac{10 \times 90}{0.5} = 42.4 \,\mathrm{m/s}$$

- a Volume = length × breadth × height = $4 \times 2 \times 3$ = 24 cm^3
- **b** density $= \frac{\text{mass}}{\text{volume}} = \frac{192}{24}; = 8 \text{ g/cm}^3$
- **c** g/cm³ \rightarrow kg/m³ = 8 \times 1000; = 8000 kg/m³
- d Side B because it has a smaller area; and area is inversely proportional to pressure.
- e Conversion of mass to weight = \times 10 N/kg because W = mg

Conversion of cm^2 to m^2 \div 10 000

Area of face $A = 4 \times 3 = 12 \text{ cm}^2$

 $Pressure = \frac{force}{area} = \frac{0.192 \times 10}{\frac{12}{10000}} = 1600 Pa$ = 1.6 kPa

Paper 2

- 1 Non-contact forces: gravity; and electrostatic.
 - Contact forces: friction; and air resistance.
- 2 a N/kg
 - **b** m/s²
 - c force
 - d Nm

AQA Physics Practice Paper Answers

3 **a** Triangle area = $0.5 \times b \times h$ rectangle area = $b \times h$

> triangles: $0.5 \times 15 \times 40 = 300 \text{ m}$ and $0.5 \times 20 \times 10 = 100 \text{ m}$; (both triangle areas required)

rectangle: $20 \times 40 = 800$ Total distance = 300 + 100 +

b Acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$

$$=\frac{50-40}{35-15}=\frac{10}{20}; = 0.5; \text{ m/s}^2$$

- c Constant speed
- d Deceleration/negative acceleration/slowing down
- (H4) a Momentum of bullet: p = mv= 0.020 × 500 = 10; kg m/s (moment undirection \rightarrow not required)
 - **b** Velocity of block and bullet = $\frac{\text{momentum of bullet}}{\text{combined mass}}$;

 $=\frac{10}{10+0.020};$

= 0.99 or 1 m/s

- **c** $E_{\rm k} = \frac{1}{2} \, 0.5 \times 10.02 \times 1^2;$ = 5.01 J or joules
- **d** All E_k is conserved and transferred to gravitational store of block so: $E_k = E_p$

mgh = 5.01 J; necessary to

rearrange to
$$h = \frac{5.01}{m \times g}$$

$$h = \frac{5.01}{m \times g} = \frac{5.01}{10.02 \times 10} = 0.05 \,\mathrm{m}$$

(accept 5 cm or 50 mm)

5 $p = m \times v = 1000 \times 20$ = 20000 kg m/s

Change in momentum = force \times time, rearrange to:

force =
$$\frac{\frac{\text{change in momentum}}{\text{time}}}{= \frac{20000}{0.05} = 400000 \text{ N}$$

- 6 The speed of the light wave is reduced in the block; The light wave is refracted; The wavelength is also decreased inside the block; The light ray bends towards the normal.
- Place magnet on a large piece of 7 paper (A3); Draw around magnet with a pencil (so it doesn't move during the experiment); Place the compass near the magnet and draw a dot in front of arrow point; Move compass so tail of compass is over the dot and draw a new dot; Continue to move the compass so that in each position it aligns itself with the magnetic field of the magnet; At the end, join the lines and remember to include the arrows showing direction north to south.
- H8 a Clockwise
 - **b** Clockwise
 - c No the motors will not all rotate at the same speed; B will rotate faster than A and C; B has more cells, so there will be a greater current in the coil (than A and D) so a greater force.
 - d Stronger magnet; or increase number of turns.