- **2** a 0°C
- **b** 100°C
- 3 a Gas
- **b** Solid

Nitrogen

- **c** Liquid
- 4 a Oxygen b
 - c Oxygen d Oxygen

lons and ionic bonding

- 1 Magnesium is a metal which is found in group 2 of the periodic table.

 This means it has 2 electrons in its outer shell. When it reacts, it loses 2 electrons and forms an ion with a 2+ charge. Fluorine is a non-metal which is found in group 7 of the periodic table. When it reacts, it gains 1 electron to form an ion with a 1- charge. When magnesium reacts with fluorine, it forms magnesium fluoride which has the formula MgF₂.
- 2 Potassium chloride, KCl; Magnesium oxide, MgO; Magnesium chloride, MgCl₂; Aluminium fluoride, AlF₃.
- 3 a Formula = LiCl

$$\text{Li}^{x} \quad + \ . \ddot{\text{Ci}} : \longrightarrow \left[\ \text{Li} \ \right]^{+} \quad \left[\ \overset{.}{\text{Ci}} \vdots \ \right]^{-}$$

(correct ion; correct formula)

b Formula = BaBr_o

$$Ba_{x}^{x} + 2.\ddot{B}r:_{2} \longrightarrow \left[Ba\right]^{2+} \left[\ddot{B}\ddot{r}:\right]^{-}$$

(correct ion; correct formula)

The structure and properties of ionic compounds

- High melting points; Conduct electricity when molten or in solution; Made of ions.
- **2** a B
- **b** A
- c C
- 3 Ionic bonds are formed when metals react with non-metals. Atoms either lose or gain electrons to become positive or negative particles called ions. The ions are held together in a giant ionic lattice by strong electrostatic forces of attraction acting in all directions.
- 4 Level 1 (marks 1-2)

KI is ionic/made of ions/consists of a giant ionic lattice.

KI will have a high melting point *or* will conduct electricity when molten or in solution.

Level 2 (marks 3-4)

KI will have a high melting point because the ions are strongly attracted together/lots of energy is needed to break the strong ionic

KI will conduct electricity when molten or in solution/dissolved because the ions are free to move.

Level 3 (marks 5-6)

KI will have a high melting point because the ions are strongly attracted

together/lots of energy is needed to break the strong ionic bonds and

KI will conduct electricity when molten or in solution/dissolved because the ions are free to move *and*

KI will not conduct electricity when solid as the ions do not move/are in fixed positions.

Covalent bonds and simple molecules

- 1 NH₃; Water.
- 2 a and b

Hvdrogen

Formula: H_o

Methane

3 a

- **b** Covalent bond triple bond
- 4 a

(each single bond; correct double bond)

b Covalent bonds – $4 \times$ single and $1 \times$ double

Diamond, graphite and graphene

- **1** a A **b** C
- 2 a Strong covalent bonds; large amounts of energy needed to overcome/break covalent bonds.
 - Each carbon is bonded to 4 other carbon atoms; covalent bonds are very strong.
 - **c** Both have delocalised electrons; both conduct electricity.
- 3 a Does not have delocalised electrons. (do not allow free/mobile ions).
 - **b** High melting/boiling points hard. (due to no delocalised electrons).

Fullerenes and polymers

- a D
- **b** C
- c A
- **d** B
- 2 a Hollow/spherical
 - b Large surface area

- 3 a Covalent
 - Polyethene is a bigger molecule so has larger intermolecular forces:
 - More energy needed to overcome these intermolecular forces:
 - Increases the melting point;
 - Allow reverse argument.

Giant metallic structures and alloys

1 Metals are **giant** structures. The atoms are arranged in **layers**.

The outer shell electrons become detached from the rest of the atom and are said to be **delocalised**. This means they are free to move throughout the whole metal.

Metallic bonding is strong because of the **electrostatic** attraction between the positive metal ions and the electrons.

2 free electrons from outer shells of metal atoms

Giant structure; Positive metal ions drawn and labelled; Delocalised electrons drawn and labelled; Electrons can carry charge throughout the metal.

- 3 a Strong electrostatic attraction between positive metal ions and delocalised electrons; Lots of energy needed to overcome the strong attraction.
 - b Carbon/different sized atoms distort the regular lattice; Layers cannot slide over each other.

Nanoparticles

- 1 1–100 nm
- 2 a 8.6×10^{-8} m
 - **b** 1.46×10^{-8} m
 - **c** 1.58×10^{-7} m
 - $\text{d} \quad 8.2 \times 10^{-9} \, \text{m}$
 - e c- because the value is > 100 nm (both points needed)
- 3 a Surface area = 5² × 6 = 150 nm²; [units not needed]
 - Volume = 5^3 = 125 nm³;
 - SA:volume ratio = 150/125 = 1.2.
 - **b** As length of the side increases, ratio increases; by a factor of 10.