AQA Physics Practice Paper Answers

Paper 1

1 a Kinetic energy $=0.5 \times$ mass \times speed 2. Or $\frac{1}{2} m v^{2}$
b Kinetic energy
$=0.5 \times$ mass \times speed 2
Kinetic energy
$=0.5 \times 3 \times 10^{2}$
$=150 \mathrm{~J}$ or joules
c Kinetic energy
$=0.5 \times$ mass \times speed 2
Kinetic energy
$=0.5 \times 8 \times 10^{2}$
$=400 \mathrm{~J}$ or joules
d $E_{k}=0.5 \times m \times v^{2}$ rearrange to $v=\sqrt{\frac{2 \times E_{\mathrm{k}}}{m}}$
[Accept alternative direct substitution method into original equation then rearrange]
$v=\sqrt{\frac{2 \times 576}{8}}=12 \mathrm{~m} / \mathrm{s}$
e Speed of dog relative to cat $=$ $12-10=2 \mathrm{~m} / \mathrm{s}$
speed $=\frac{\text { distance }}{\text { time }}$ rearrange to
time $=\frac{\text { distance }}{\text { time }}$
time $=\frac{10}{2}=5$ seconds
2 a Light as a pathway transferring energy by radiation
b Elastic potential
c Vibrational/mechanical
d Chemical
e Kinetic
f Gravitational potential
3 Bradley increases his chemical store by eating his breakfast; When he is cycling up the hill he is depleting his chemical store; meanwhile he is increasing his gravitational store; and increasing his kinetic store; At the top of the hill his gravitational store is at a maximum; As he descends his gravitational store decreases and his kinetic store increases (If he is free-wheeling his chemical store remains fairly constant); On hitting his brakes at the bottom, a redistribution takes place from his (and the bike's) kinetic energy store to the thermal store of the brake disk, wheels and other parts where friction takes place.

4 a Atoms must be approximately the same size; In liquid diagram spaces cannot be any bigger than actual atoms; In gas diagram at least approximately 75% of box should be empty space;

Solid: ordered, regular close together, vibration around a fixed point.
Liquid: close together, disordered, multidirectional weaker bonds.

Gas: far apart, high speed, random motion.
b Particles/atoms/molecules
c Keep the marbles together in a uniform/ordered/regular pattern, then vibrate them slightly.
d Shake the marbles hard/so some of the marbles fall out of the tray; High speed molecules that evaporate are like the marbles that leave the tray; Only the fastest marbles with the highest energy in the kinetic store will leave the tray.
$5 E=m \times c \times \Delta \theta$
$E=0.25 \times 4200 \times 10$
$E=10500 \mathrm{~J}$ or joules
$6 \quad E_{\mathrm{p}}=m g h$ rearrange to:
$m=\frac{E_{\mathrm{p}}}{g \times h} ; 6 \mathrm{~kJ}=6000 \mathrm{~J}$
$\mathrm{m}=\frac{6000}{10 \times 12} ;=50 \mathrm{~kg}$
7 a Correctly labelled axis and units; correctly plotted points
b Resistor straight line with ruler; and filament lamp straight line then curve

c Filament lamp; Device only ohmic within a limited range; Then resistance increases as potential difference (or temperature) increases.
d 10Ω; evidence of using line of best fit, not single value, to calculate the resistance.
8 a $E_{\mathrm{p}}=m g h$
$E_{p}=2000 \times 10 \times 90$
$E_{\mathrm{p}}=1800000 \mathrm{~J}$
$E_{\mathrm{p}}=1800 \mathrm{~kJ}$
b $E_{\mathrm{p}}=m g h$ and $E_{\mathrm{k}}=\frac{1}{2} m v^{2}$
All potential energy store converted to kinetic energy of carriage and passengers;
[Expressed in words or as equation]
$m g h=0.5 \times m \times v^{2}$
$v=\frac{g \times h}{0.5}$
$v=\frac{10 \times 90}{0.5}=42.4 \mathrm{~m} / \mathrm{s}$
9 a An alpha emitter ionises the air and allows a current to flow; It is not very penetrative so smoke prevents the alpha emitter from continuing to ionise the air.
b Radiation is ionising; Tampering with an alpha emitter could lead to irradiation or contamination; If ingested, alpha radiation could be extremely dangerous.
c The time it takes; for the number of nuclei of the isotope to halve. [Accept other correct definition linked to mass/countrate/activity]
d $1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4}=2$ half-lives
e $2 \times 433=866$ years
10 a $a-2 ; b-1 ; c-4 ; d-3$
b Beta decay
c A helium nucleus
11 When an object becomes charged it creates an electric field; The field exerts a force on other charged objects placed inside the field; It exerts an attractive force on objects with opposite charge and; a repulsive force on objects with the same charge.

12 a Beta (radiation)
b Neutron splits; and emits a proton; and an electron.
c It will prevent contamination.
d It will not prevent irradiation; as beta radiation will penetrate gloves (and skin).
e Keep source at arm's length with tongs, then place inside a lead-lined box.

13 a Volume $=$ length \times breadth \times height $=4 \times 2 \times 3$

$$
=24 \mathrm{~cm}^{3}
$$

b density $=\frac{\text { mass }}{\text { volume }}=\frac{192}{24} ;=$ $8 \mathrm{~g} / \mathrm{cm}^{3}$
c $\mathrm{g} / \mathrm{cm}^{3} \rightarrow \mathrm{~kg} / \mathrm{m}^{3}=8 \times 1000 ;=$ $8000 \mathrm{~kg} / \mathrm{m}^{3}$
d Side B because it has a smaller area; and area is inversely proportional to pressure.
e Conversion of mass to weight $=\times 10 \mathrm{~N} / \mathrm{kg}$ because $W=m g$
Conversion of cm^{2} to m^{2} $\div 10000$

$$
\text { Area of face } A=4 \times 3=12 \mathrm{~cm}^{2}
$$

Pressure $=\frac{\text { force }}{\text { area }}=$
$\frac{0.192 \times 10}{\frac{12}{10000}}=1600 \mathrm{~Pa}$

$$
=1.6 \mathrm{kPa}
$$

Paper 2

1 Non-contact forces: gravity; and electrostatic.
Contact forces: friction; and air resistance.

2 a N/kg
b $\mathrm{m} / \mathrm{s}^{2}$
c force
d Nm
3 a Pressure due to a column of liquid $(p)=$ height of column $(h) \times$ density of liquid $(\rho) \times$ gravitational field strength (g)
or $p=h \times \rho \times g$ (accept words or correct symbols and penalise incorrect use of uppercase letters in symbols)
b Pressure increases with depth or height of column of water; because of $p=h \rho g$; Deeper hole has higher pressure so water is pushed out further.
c i $p=h \rho g=25 \times 1027 \times 10$ $=256800$ or 257000 ; Pa (or 257 or 256.8 kPa for 3 marks) (accept $\mathrm{N} / \mathrm{m}^{2}$ for Pa)
ii $p=h \rho g$ rearrange to: $h=\frac{p}{\rho g}$; $\frac{22000}{1027 \times 10}=2.14 ; \mathrm{m}$
4 a Triangle area $=0.5 \times b \times h$ rectangle area $=b \times h$
triangles:
$0.5 \times 15 \times 40=300 \mathrm{~m}$ and $0.5 \times 20 \times 10=100 \mathrm{~m}$; (both triangle areas required)
rectangle: $20 \times 40=800$
Total distance $=300+100+$ $800=1200 m$
b Acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
$=\frac{50-40}{35-15}=\frac{10}{20} ;=0.5 ; \mathrm{m} / \mathrm{s}^{2}$
c Constant speed
d Deceleration/negative acceleration/slowing down
H5 a Momentum of bullet: $p=m v$ $=0.020 \times 500=10 ; \mathrm{kg} \mathrm{m} / \mathrm{s}$ (moment undirection \rightarrow not required)
b Velocity of block and bullet
$=\frac{\text { momentum of bullet }}{\text { combined mass }}$;
$=\frac{10}{10+0.020}$;
$=0.99$ or $1 \mathrm{~m} / \mathrm{s}$
c $E_{\mathrm{k}}=\frac{1}{2} 0.5 \times 10.02 \times 1^{2}$;

$$
=5.01 \mathrm{~J} \text { or joules }
$$

d All E_{k} is conserved and transferred to gravitational store of block so: $E_{\mathrm{k}}=E_{\mathrm{p}}$
$m g h=5.01 \mathrm{~J}$; necessary to
rearrange to $h=\frac{5.01}{m \times g}$
$h=\frac{5.01}{m \times g}=\frac{5.01}{10.02 \times 10}=0.05 \mathrm{~m}$
(accept 5 cm or 50 mm)
$6 p=m \times v=1000 \times 20$

$$
=20000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

Change in momentum
$=$ force \times time, rearrange to:
force $=\frac{\text { change in momentum }}{\text { time }}$

$$
=\frac{20000}{0.05}=400000 \mathrm{~N}
$$

7 a The transducer sends a pulse; and is able to detect the reflected pulse; The pulse is partially reflected from the different tissue boundaries in its path; The different pulses reflected arrive back (to the transducer) at different times; The transducer is moved across the body; and the pulses detected by the transducer can be used to form images of the internal tissue of the foetus.
b X-rays are ionising and; therefore may be harmful to a developing foetus; Ultrasound has no harmful effects; Ultrasound is reflected from different boundaries allowing images of organs and other soft tissues to be formed.
8 The speed of the light wave is reduced in the block; The light wave is refracted;

The wavelength is also decreased inside the block; The light ray bends towards the normal.
9 a Horizontal line from object to lens; line from top of object through centre of lens to intersection point; line from top of lens passing through focal point; intersection of at least two lines; image drawn with arrow (allow the construction lines through focal point on object side and parallel line to principal axis as alternative to mark points 1 and 2)

b Convex
c Real
d $\times 1$
magnification $=\frac{\text { image height }}{\text { object height }}$
$=\frac{2.0}{2.0}=\times 1 \pm 10 \%$
(accept stated as words: image is neither enlarged or diminished but same size as object)
10 Place magnet on a large piece of paper (A3); Draw around magnet with a pencil (so it doesn't move during the experiment); Place the compass near the magnet and draw a dot in front of arrow point; Move compass so tail of compass is over the dot and draw a new dot; Continue to move the compass so that in each position it aligns itself with the magnetic field of the magnet; At the end, join the lines and remember to include the arrows showing direction north to south.

H11 a Clockwise

b Clockwise
c No the motors will not all rotate at the same speed; B will rotate faster than A and C; B has more cells, so there will be a greater current in the coil (than A and D) so a greater force.
d Stronger magnet; or increase number of turns.
H12 a A cosine wave form (accept starting at positive or negative max value); graph marked when voltage is zero; at least 2 points labelled.
b Trace is twice the amplitude as potential difference 1 ; Trace is twice the frequency of potential difference 1.
c dc wave form with negative part of sinusoidal trace inverted.

d Split-ring commutator $=$ dc; slip rings $=\mathrm{ac}$.

e The output of the split-ring commutator is dc, whereas the output of the slip rings is ac.
13 a Gravity; and outward force of fusion energy.
b Red giant stage; hydrogen fuel is used up; Outer layers expand and start to cool and become red.
c Larger (mass) stars burn hotter to balance greater gravitational force; so run out of fuel faster than the Sun; When fuel runs out it expands and instead of becoming a red giant it becomes a red super giant; For both large (mass) and very large (mass) stars the next stage is a supernova. This is where the outer layers are blown off in an 'explosion'; For a large star the supernova core collapses to a neutron star; A neutron star is very, very dense and although small has a huge gravitational field; For a very, very large star
the supernova core continues to collapse until a black hole is formed; A black hole is a tiny point with a huge gravitational field and the pull is so great not even light can escape.

