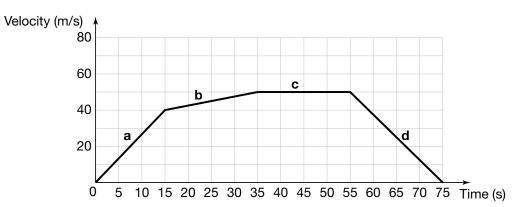
Physics Paper 2 for All Boards

1 Complete the table below to show if the forces are contact or non-contact forces. The first one has been done for you. (4 marks)


Force Type	Contact Force	Non-contact Force
Upthrust	✓	
Friction		
Gravity		
Air resistance		
Electrostatic		

	Grav	TLY		
	Air resis	tance		
	Electro	static		
2		orrect unit for field strength. (1 mark)	b Choose the correct u acceleration. (1 mark)	nit for
	N		m/s	
	kg/m³		m/s²	
	N/kg		/m²	
	kgm/s		kgm/s	
	c Choose the v	ector example from . (1 mark)	d Choose a unit that ca work done. (1 mark)	n be used for
	Force		Nm	
	Energy		N/m	
	Speed		N/m²	
	Distance		kgm/s	

3	а	State the formula that describes how pressure difference in a liquid can be calculated when there is a change in depth. (1 mark)				
	b	Explain why the water spurts out further at the bottom of the container shown in the image to the right. (3 marks)				
	С	A scuba diver is diving in open water.				
		he density of the water is 1027 kg/m³.				
		he gravitational field strength is 10 N/kg.				
		i The diver descends from the surface to a depth of 25 m. Calculate the increase in pressure on her body at the depth of 25 m. (3 marks)				
		ii How deep would the diver have to descend for the pressure to increase to 22 kPa? (4 marks)				

4 A car goes on a journey. The following velocity–time graph is made of a short part of the journey.

Use the graph to:

а	Calculate the total distance travelled in parts a and b of the journey. (4 marks)
0	Calculate the acceleration during part b. (3 marks)
С	Describe the car's motion in part c. (1 mark)
d	Without calculation describe the car's motion in part d. (1 mark)

(5) A bullet of mass 20 g is fired into a block of wood of mass 10 kg. The block is suspended from a piece of string.

	500 III/S
a	Calculate the momentum of the bullet before it hits the block. (2 marks)
b	When the bullet hits the block it becomes embedded in it.
	Use the principle of conservation of momentum and assume the bullet and block form part of a closed system to calculate the velocity of the block of wood and bullet just after the impact. (3 marks)
С	Calculate the kinetic energy of the block of wood with the bullet in it just after impact.
d	Assume energy is conserved in the collision. Shifts in energy take place only from kinetic to gravitational stores. Calculate how high up the block will swing. (3 marks)

6 A car of mass 1000 kg is travelling at 20 m/s.

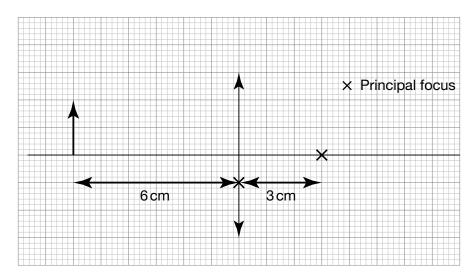
The car crashes into a tree, and comes to a complete halt in 0.05 s.

Calculate the force acting on the car during the collision. (5 marks)

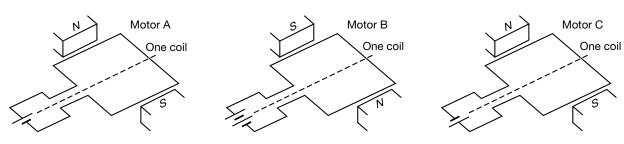
•••••	 	 	
•••••	 	 	

7 Ultrasound waves can be used for medical imaging.

A transducer is a device that can be used in this application.


Explain how ultrasound and a transducer can be used in pre-natal scanning. (6 marks)

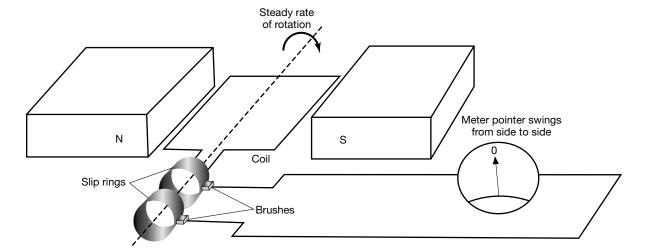
Physics	Paper 2 for All Boards
b	Explain why ultrasound is more suitable than X-ray for pre-natal scanning. (4 marks)
(8) TI	he following diagram chows a light row entering a gloss block
$\overline{}$	he following diagram shows a light ray entering a glass block. he wave fronts of light have also been shown.
E :	xplain what changes take place for the light wave when it enters the block. (4 marks)


- An object is placed 8 cm from a lens. The lens has a focal length of 8 cm.
 - a Complete the ray diagram to show the image formation. (5 marks)

b	State the type of lens used. (1 mark)
С	State the type of image that is formed. (1 mark)
d	Determine the magnification of the image. (1 mark)
а	student wishes to observe the magnetic field of a magnet using a plotting compass, piece of paper and a pencil. Write a short method they can use to carry out this task.
•••	
•••	
•••	

11) The following diagrams show simple dc motors.

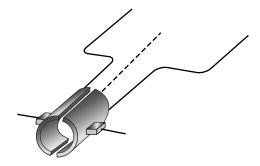
Motor A rotates anticlockwise.


a	Which way will motor B rotate? (1 mark)
b	Which way will motor C rotate? (1 mark)
С	Will all the motors rotate at the same speed? Explain your answer. (3 marks)
d	What other modifications could be made to the motors to change the speed of the motors' rotation? (2 marks)

12) The diagram below shows an alternating current (ac) generator.

The coil is made to rotate by an external force at a steady speed.

In the diagram the coil is parallel to the magnetic field lines of the magnet.


a Using the axes below, sketch a trace to show how potential difference varies with time for at least one cycle of the ac generator. Label this potential difference 1.

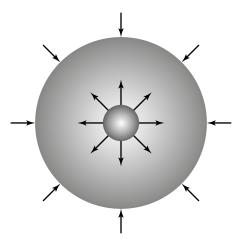
(2 marks)

- **b** Mark on your graph with an x the points where the coil is at right angles to the magnetic field lines. (2 marks)
- c The steady speed is increased to twice the original speed. Sketch a trace of how potential difference varies with time on the same graph above. Label this trace potential difference 2. (2 marks)

d The two slip rings are now replaced with a split-ring commutator as seen in the diagram below.

The coil rotates at a steady speed.

Use the axes below to sketch the voltage waveform that is produced. (2 marks)



Explain the main difference between the output with slip rings and a split-ring commutator. (2 marks)

е

(13) Below is a diagram of the forces acting on the Sun.

The Sun is currently in a stable state where two forces are balanced.

At this stage it is called a main-sequence star and this will last for several billion years.

а	State the two forces that are balanced in our Sun. (2 marks)
b	State the next stage in our Sun's life cycle after being a main-sequence star.
	Explain why this next stage will happen. (3 marks)
С	Explain how the life cycle is different for a star much bigger than our Sun. (6 marks)

