- H 3 a
 - $4Cu + O_2 \rightarrow 2Cu_2O$
 - $Cu \rightarrow 1.26$ moles; $O_2 \rightarrow 1.56$ moles
 - Copper; because in the equation, the ratio of moles is Cu:O₂ 4:1, however in the experiment there was only 1.26:1.56 moles.

Concentrations in solutions

- н 1
- а 1

- Test 1 250 g/dm³
 - Test 2 400 g/dm3
 - Test 3 571 g/dm³
 - Test 1 0.09 moles
 - Test 2 0.17 moles
 - Test 3 0.34 moles
- н
- - 0.01 moles/143 g/mol = 1.43 g =1.43 g/dm³
 - 3575000 g; $3.575 \times 10^6 \text{ g}$

Chemical changes

Metal oxides and the reactivity series

- Magnesium + oxygen → magnesium oxide
 - $2Mg(s) + O2(g) \rightarrow 2MgO(s)$ (correct; balanced)
 - c Oxygen is gained/electrons are lost.
- a Aluminium + lead chloride → 2 aluminium chloride + lead
 - b Silver + copper oxide → no reaction
 - Calcium + zinc nitrate → calcium nitrate + zinc
 - Iron chloride + copper \rightarrow no reaction d
- 3 1-Sodium, 2-X, 3-Magnesium, 4-Copper.
 - Copper

Extraction of metals and reduction

- Carbon is less reactive than magnesium.
- It's unreactive/doesn't easily form compounds.
- Copper oxide + carbon → carbon oxide/dioxide + copper (reactants; products)
 - Carbon b
- а Reduction/redox
 - $2Fe_{2}O_{3}(s) + 3C(s) \rightarrow 4Fe(l) +$ 3CO₂(g) (reactants; products)
 - Iron is a liquid. С
 - d Carbon is more reactive than iron.
 - Any metal above iron in the reactivity series; Too expensive/ metals above carbon extracted by electrolysis so require more energy.

The reactions of acids

- Both neutralise acid; Bases are insoluble/alkalis are soluble bases/alkalis form hydroxide/OH- ions ins solution.
- Sodium chloride sodium 2 hydroxide and hydrochloric acid.

- Potassium nitrate potassium carbonate and nitric acid.
- Copper sulfate copper oxide and С sulfuric acid.
- Solid dissolves/colourless solution 3 а
 - b Fizzing occurs with magnesium carbonate.
 - Magnesium oxide + hydrochloric acid → magnesium chloride + water
 - MgCO_a
- 4 а $Mg(s) + 2HCl(aq) \rightarrow MgCl_{2}(aq) +$ $H_{2}(g)$
 - b $\text{Li}_2\text{O}(s) + \text{H}_2\text{SO}_4(aq) \rightarrow \text{Li}_2\text{SO}_4(aq) +$ H₂O(l)
 - С CuO(s) + 2HCl(aq) → CuCl₂(aq) + H₂O(I)
- 5 $Ca(s) + 2H^{+}(aq) \rightarrow Ca^{2+}(aq) + H_{2}(g)$ (reactants; products; state symbols)
 - Ca oxidised; H+/hydrogen reduced.

The preparation of soluble salts

- a Copper carbonate + sulfuric acid → copper sulfate + water + carbon dioxide
 - Any two from: Copper carbonate dissolves; Fizzing/bubbles/ effervescence; Blue/green solution
 - To ensure all the acid reacts. С
 - Filtration
 - Copper oxide/copper hydroxide.
 - Any one from: Salt lost from spitting during evaporation; Solution left in container; Not all the solution crystallises.
- 2 $Ca(s) + 2HNO_3(aq) \rightarrow Ca(NO_3)_2(aq)$ + H₂(g) (reactants; products; state symbols)
 - b % yield = 2.6/3.0 x 100; 86.7%

Possible steps to include:

Reactants (zinc/zinc hydroxide/zinc oxide/zinc carbonate) and hydrochloric acid; Correct equation for chosen reactants; Heat acid; Add base until no more reacts/dissolves so the base is in excess; Filter unreacted base; Heat solution on a steam bath until half the water has evaporated; Leave remaining solution to cool so crystals form.

Equipment list: Bunsen burner; Heatproof mat; Tripod; Gauze; Beaker; Evaporating dish; Funnel; Filter paper; Conical flask; Spatula; Measuring cylinder; Safety glasses.

Oxidation and reduction in terms of electrons

- 1 а $Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) +$
 - h Mg is oxidised and Cu is reduced.
- $Mg(s) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) +$ 2 Zn(s); Mg oxidised, Zn reduced.
 - $2Na(s) + Zn^{2+}(aq) \rightarrow 2Na^{+}(aq) +$ Zn(s); Na oxidised, Zn reduced.
 - $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) +$ 2Ag(s); Cu oxidised, Zn reduced.

 $3Ca(s) + 2Fe^{3+}(aq) \rightarrow 3Ca^{2+}(aq) +$ 2Fe(s); Ca oxidised, Fe reduced.

pH scale and neutralisation

- Strong acid pH2 Red, Weak acid - pH5 - Yellow, Strong alkali pH13 - Purple, Weak alkali - pH9 -Blue, Neutral - pH7 - Green.
- Hydroxide ion
- 3 H+
- 4 pH1
- 5 pH12
- 6 Potassium hydroxide. а
 - b $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - $H^+ + OH^- \rightarrow H_2O$ or $2H^+ + 2OH^- \rightarrow$ 2H₂O
- OH- and NH,+

Strong and weak acids

- $HNO_3(aq) \rightarrow H^+(aq) + NO_3^-(aq)$
 - $HCOOH(aq) \rightarrow H^{+}(aq) + COO^{-}(aq)$
 - $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$ or $H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^-(aq)$
- Weak acid only partially ionises in solution; Dilute acid has fewer moles of solute dissolved.
- 3 а 1 x 10⁻³
 - Answer is 100 times greater as if pH decreases by 1, H+ concentration increases by 10; 0.1 (overrides previous mark); 1 x 10⁻¹

Electrolysis

- Ions are free to move when molten/ 2 aqueous; Ions in fixed positions/ions can't move in solid lattice.
- 3 а Zinc and chlorine.
 - b Silver and iodine.
 - С Copper and oxygen.
- $Pb^{2+} + 2e^{-} \rightarrow Pb$; $2Br \rightarrow Br_{a} + 2e^{-}$ а
 - Lead/lead ions reduced and bromine/bromide ions oxidised.

The electrolysis of aqueous solutions

- Copper chloride copper and chlorine.
 - Potassium bromide hydrogen and bromine.
 - С Zinc sulfate - zinc and oxygen.
 - d Sodium carbonate - hydrogen and oxygen.
- 2 2H+ + 2e- → H₂ а
 - Chlorine; 2Cl⁻ → Cl₂ + 2e⁻ (correct; balanced)
- H+/hydrogen; Li+/lithium; OH-/ 3 а hydroxide.