AQA Combined Science Additional Question Answers

Abiotic and biotic factors

a The birds eat the insects that have been killed by DDT.
b The hawks are further up the food chain/top predators; DDT accumulates in the organisms as it moves up the food chain.

Limiting reactants
a $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
b $\quad 5.68 \mathrm{~g}$
c The limiting reactant is oxygen; because in the balanced equation the ratio is $1: 5(0.3: 1.5)$, but the engine only has $0.3: 0.1$; They could make the engine more efficient by increasing the amount of oxygen.

National and global energy resources

Advantages: Wind is renewable, doesn't emit greenhouse gases.
Disadvantages: Wind is unreliable, requires a huge amount of land, is considered an eyesore.

Electrical charge and current
Time $=\frac{\text { charge flow }}{\text { current }} ;$
$=\frac{1800}{6}$
$=300 \mathrm{~s}$; or 5 minutes

Current, resistance and potential difference and resistors

$$
\begin{aligned}
& \mathrm{A} 2=0.5 \mathrm{~A}, \mathrm{~A} 3=1 \mathrm{~A}, \mathrm{~V} 2=5 \mathrm{~V} \\
& \mathrm{~V} 3=5 \mathrm{~V}
\end{aligned}
$$

Series and parallel circuits
In a series circuit, current is the same throughout the circuit and potential difference splits across the components. In a parallel circuit, potential difference is the same across each branch of the circuit and current splits through the parallel branches. An ammeter must be connected in series to work correctly. A voltmeter must be connected in parallel to work correctly.

Hazards and uses of radioactive emissions
a 1 lead-210 for every 7 bismuth-210 means $\frac{1}{8}$ th lead remains in sample $1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8}$
This means 3 half-lives have elapsed
b $3 \times 22=66$ years

Acceleration

a Acceleration
b Constant speed
c Deceleration
Newton's laws of motion
a Zero
b Resultant force $=$ mass \times acceleration: rearrangement: acceleration $=\frac{\text { resultant force }}{\text { mass }}$ acceleration $=\frac{8000}{800} ;=10 \mathrm{~m} / \mathrm{s}^{2}$
c Acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$ rearrangement:
time taken $=\frac{\text { change in velocity }}{\text { acceleration }}$
time taken $=\frac{30}{10} ;=3 \mathrm{~s}$
Properties of waves

$$
\begin{aligned}
& v=f \times \lambda ; \\
& \begin{aligned}
\lambda=v / f ; & =\frac{300000000}{603000} \\
& =497.5 ; \mathrm{m}
\end{aligned}
\end{aligned}
$$

