- **b** $2\text{Fe}_2\text{O}_3(\text{s}) + 3\text{C}(\text{s}) \rightarrow 4\text{Fe}(\text{l}) + 3\text{CO}_2(\text{g})$ (reactants; products)
- c Iron is a liquid.
- d Carbon is more reactive than iron.
- Any metal above iron in the reactivity series; Too expensive/metals above carbon extracted by electrolysis so require more energy.

The reactions of acids

- Both neutralise acid; Bases are insoluble/alkalis are soluble bases/alkalis form hydroxide/OH⁻ ions ins solution.
- 2 a Sodium chloride sodium hydroxide and hydrochloric acid.
 - **b** Potassium nitrate potassium carbonate and nitric acid.
 - **c** Copper sulfate copper oxide and sulfuric acid.
- 3 a Solid dissolves/colourless solution forms.
 - **b** Fizzing occurs with magnesium carbonate.
 - c Magnesium oxide + hydrochloric acid → magnesium chloride + water
 - d MgCO₃
- 4 a $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$
 - $\begin{array}{ll} \textbf{b} & \text{Li}_2\text{O(s)} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Li}_2\text{SO}_4(\text{aq}) + \\ & \text{H}_2\text{O(l)} \end{array}$
 - **c** $CuO(s) + 2HCI(aq) \rightarrow CuCI_2(aq) + H_2O(I)$
- 5 a Ca(s) + 2H⁺(aq) → Ca²⁺(aq) + H₂(g) (reactants; products; state symbols)
 - **b** Ca oxidised; H+/hydrogen reduced.

The preparation of soluble salts

- 1 a Copper carbonate + sulfuric acid → copper sulfate + water + carbon dioxide
 - b Any two from: Copper carbonate dissolves; Fizzing/bubbles/ effervescence; Blue/green solution forms.
 - **c** To ensure all the acid reacts.
 - d Filtration
 - e Copper oxide/copper hydroxide.
 - f Any one from: Salt lost from spitting during evaporation; Solution left in container; Not all the solution crystallises.
- $\begin{array}{lll} \textbf{2} & \textbf{a} & \text{Ca(s)} + 2\text{HNO}_3(\text{aq}) \rightarrow \text{Ca(NO}_3)_2(\text{aq}) \\ & + \text{H}_2(\text{g}) \text{ (reactants; products; state symbols)} \end{array}$
 - **b** % yield = 2.6/3.0 x 100; 86.7%

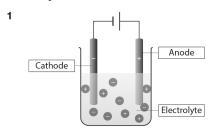
3 Possible steps to include:

Reactants (zinc/zinc hydroxide/zinc oxide/zinc carbonate) and hydrochloric acid; Correct equation for chosen reactants; Heat acid; Add base until no more reacts/dissolves so the base is in excess; Filter unreacted base; Heat solution on a steam bath until half the water has evaporated; Leave remaining solution to cool so crystals form.

Equipment list: Bunsen burner; Heatproof mat; Tripod; Gauze; Beaker; Evaporating dish; Funnel; Filter paper; Conical flask; Spatula; Measuring cylinder; Safety glasses.

Oxidation and reduction in terms of electrons

- 1 a $Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$
 - **b** Mg is oxidised and Cu is reduced.
- $\begin{tabular}{ll} \bf 2 & \bf a & Mg(s) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) + \\ & Zn(s); Mg \ oxidised, \ Zn \ reduced. \end{tabular}$
 - **b** $2Na(s) + Zn^{2+}(aq) \rightarrow 2Na^{+}(aq) + Zn(s)$; Na oxidised, Zn reduced.
 - c $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$; Cu oxidised, Zn reduced.
 - d $3Ca(s) + 2Fe^{3+}(aq) \rightarrow 3Ca^{2+}(aq) + 2Fe(s)$; Ca oxidised, Fe reduced.


pH scale and neutralisation

- Strong acid pH 2 Red, Weak acid - pH 5 - Yellow, Strong alkali - pH 13 - Purple, Weak alkali - pH 9 - Blue, Neutral - pH 7 - Green.
- 2 Hydroxide ion
- 3 H⁴
- 4 pH1
- **5** pH 12
- a Potassium hydroxide.
 - **b** $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - c $H^+ + OH^- \rightarrow H_2O$ or $2H^+ + 2OH^- \rightarrow 2H_2O$
- 7 OH- and NH₄+

Strong and weak acids

- **I** a $HNO_3(aq) \rightarrow H^+(aq) + NO_3^-(aq)$
 - **b** $HCOOH(aq) \rightarrow H^+(aq) + COO^-(aq)$
 - c $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$ or $H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^{-}(aq)$
- Weak acid only partially ionises in solution; Dilute acid has fewer moles of solute dissolved.
- 3 a 1 x 10⁻³
 - Answer is 100 times greater as if pH decreases by 1, H⁺ concentration increases by 10; 0.1 (overrides previous mark); 1 x 10⁻¹

Electrolysis

- 2 Ions are free to move when molten/ aqueous; Ions in fixed positions/ions can't move in solid lattice.
- 3 a Zinc and chlorine.
 - **b** Silver and iodine.
 - c Copper and oxygen.

- **4 a** $Pb^{2+} + 2e^{-} \rightarrow Pb$; $2Br^{-} \rightarrow Br_{2} + 2e^{-}$
 - **b** Lead/lead ions reduced and bromine/bromide ions oxidised.

The electrolysis of aqueous solutions

- **1 a** Copper chloride copper and chlorine.
 - **b** Potassium bromide hydrogen and bromine.
 - c Zinc sulfate zinc and oxygen.
 - **d** Sodium carbonate hydrogen and oxygen.
- 2 a 2H⁺ + 2e⁻ → H₂
 - b Chlorine; 2Cl⁻ → Cl₂ + 2e⁻ (correct; balanced)
- 3 a H⁺/hydrogen; Li⁺/lithium; OH⁻/ hydroxide.
 - b I-/iodide ions attracted to anode/ positive electrode; Lose electron/ an electron; Form iodine; 2I⁻ → I₂ + 2e⁻.
 - c Lithium hydroxide/LiOH.
- **4 a** Anode
 - **b** $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$; OH^- and H_2O (correct; balanced)

The extraction of metals using electrolysis

- 1 a Strong ionic bonds/strong electrostatic attraction between oppositely charged ions; Requires lots of energy to overcome.
 - **b** So the ions are free to move.
 - c Reduce the operating temperature; Saves energy/reduces energy costs.
 - d Electrons are lost.
 - e Al³+ + 3e⁻ → Al (correct; balanced electrons)
 - f They react with the oxygen produced; Carbon + oxygen \rightarrow carbon dioxide/C + O₂ \rightarrow CO₂
 - g Electricity wasn't discovered/ electricity not needed to extract

Practical investigation into the electrolysis of aqueous solutions

- a Independent Metal/metal ion in salt; Dependent variable – Product formed at cathode; Control variables – Volume of solution, Concentration of solution, Negative ion in salt, Voltages.
 - **b** Only 1 variable is changed.
- Place a lighted splint into the gas; Positive test – burns with a squeaky pop.
- **3 a** CuCl₂ Copper; all others Hydrogen.
 - Solutions containing metals above hydrogen in the reactivity series