Algebra Skills Edexcel Maths Higher GCSE 9-1

Full worked solutions

Revision answers

Simple algebraic techniques p. 7
1 a Formula
b Identity
c Expression
d Identity
e Equation
2 a $15 x^{2}-4 x+x^{2}+9 x-x-6 x^{2}=10 x^{2}+4 x$
b $7 a+5 b-b-4 a-5 b=3 a-b$
c $8 y x+5 x^{2}+2 x y-8 x^{2}=-3 x^{2}+10 x y$ (or 10xy-3 x^{2})
d $x^{3}+3 x-5+2 x^{3}-4 x=3 x^{3}-x-5$
$3 P=I^{2} R=\left(\frac{2}{3}\right)^{2} \times 36=\frac{4}{9} \times 36=16$
$4 v=u+a t=20+(-8)(2)=20-16=4$
Removing brackets $\mathbf{p} .10$
1 a $2 x+8$
b $63 x+21$
c $-1+x$ or $x-1$
d $3 x^{2}-x$
e $3 x^{2}+3 x$
f $20 x^{2}-8 x$
2 a $2(x+3)+3(x+2)=2 x+6+3 x+6=5 x+12$
b $6(x+4)-3(x-7)=6 x+24-3 x+21=3 x+45$
c $3 x^{2}+x+x^{2}+x=4 x^{2}+2 x$
d $3 x^{2}-4 x-6 x+8=3 x^{2}-10 x+8$
3 a $(t+3)(t+5)=t^{2}+5 t+3 t+15=t^{2}+8 t+15$
b $(x-3)(x+3)=x^{2}+3 x-3 x-9=x^{2}-9$
c $(2 y+9)(3 y+7)=6 y^{2}+14 y+27 y+63$

$$
=6 y^{2}+41 y+63
$$

d $(2 x-1)^{2}=(2 x-1)(2 x-1)=4 x^{2}-2 x-2 x+1$

$$
=4 x^{2}-4 x+1
$$

4 a $(x+7)(x+2)(2 x+3)=\left(x^{2}+9 x+14\right)(2 x+3)$

$$
=2 x^{3}+21 x^{2}+55 x+42
$$

b $(2 x-1)(3 x-2)(4 x-3)=\left(6 x^{2}-7 x+2\right)(4 x-3)$

$$
\begin{aligned}
= & 24 x^{3}-28 x^{2}+8 x-18 x^{2} \\
& +21 x-6 \\
= & 24 x^{3}-46 x^{2}+29 x-6
\end{aligned}
$$

Factorising p. 13
1 a $24 t+18=6(4 t+3)$
b $9 a-2 a b=a(9-2 b)$
c $5 x y+15 y z=5 y(x+3 z)$
d $24 x^{3} y^{2}+6 x y^{2}=6 x y^{2}\left(4 x^{2}+1\right)$
2 a $(x+7)(x+3)$
b $(x+5)(x-3)$
c To get 6 , use factors 2 and 3 , and to get 10 use factors 2 and 5 . This gives $2 x \times 2=4 x$ and $3 x \times 5=15 x$, total $19 x$; so solution is $(2 x+5)(3 x+2)$
d Difference of two squares. Factorises to $(2 x+7)(2 x-7)$
$3 \frac{1}{x-7}-\frac{x+10}{2 x^{2}-11 x-21}=\frac{1}{x-7}-\frac{x+10}{(2 x+3)(x-7)}$ of the $2^{\text {nd }}$ fraction.

Make both denominators the same.
$=\frac{2 x+3}{(x-7)(2 x+3)} \frac{x+10}{(2 x+3)(x-7)}$
$=\frac{2 x+3-x-10}{(x-7)(2 x+3)}$
$=\frac{x-7}{(x-7)(2 x+3)}$
$=\frac{1}{2 x+3}$
Changing the subject of a formula p. 15

$$
\begin{array}{rlr}
1 \quad \text { a } & A=\pi r^{2} \quad \frac{A}{\pi}=r^{2} \\
& r=\sqrt{\frac{A}{\pi}} \\
& \text { b } & A=4 \pi r^{2} \\
& \frac{A}{4 \pi}=r^{2} \\
& r=\sqrt{\frac{A}{4 \pi}} \\
\text { c } & V=\frac{4}{3} \pi r^{3} \\
& 3 V=4 \pi r^{3} \\
& \frac{3 V}{4 \pi}=r^{3} \\
& r=\sqrt[3]{\frac{3 V}{4 \pi}}
\end{array}
$$

2 a $y=m x+c$
(c) \longleftarrow Subtract $m x$ from both sides.
$c=y-m x$
b $\quad v=u+a t$
$u=v-a t$
c $v=u+a t$
$(u) \leftharpoonup$ Subtract at from both sides.
(a) \longleftarrow Subtract u from both sides.
$v-u=a t$
$a=\frac{v-u}{t}$

Divide both sides by t.
d $v^{2}=2 a s$
$(s) \longleftarrow$ Divide both sides by $2 a$. $s=\frac{v^{2}}{2 a}$
e $v^{2}=u^{2}+2 a s$
(u) Subtract 2as from both sides.
$v^{2}-2 a s=u^{2}$
$u=\sqrt{v^{2}-2 a s}$

f $\quad s=\frac{1}{2}(u+v) t$
$(t) \leftharpoonup$ Multiply both sides by 2 .
$2 s=(u+v) t$ $t=\frac{2 s}{u+v}$
Divide both sides by $(u+v)$.

Solving linear equations p. 17

1 a $x-7=-4$

$$
x=-4+7=3
$$

b $9 x=27$
$x=27 \div 9=3$
c $\frac{x}{5}=4$
$x=4 \times 5=20$
2 a $3 x+1=16$

$$
\begin{aligned}
3 x & =15 \\
x & =5
\end{aligned}
$$

b $\frac{2 x}{3}=12$
$2 x=36$
$x=18$
c $\frac{3 x}{5}+4=16$

$$
\frac{3 x}{5}=12
$$

$$
3 x=60
$$

$$
x=20
$$

3 a $5(1-x)=15$

$$
5-5 x=15
$$

$$
-5 x=10
$$

$$
x=-2
$$

b $2 m-4=m-3$

$$
m-4=-3
$$

$$
m=1
$$

c $9(4 x-3)=3(2 x+3)$

$$
36 x-27=6 x+9
$$

$$
30 x-27=9
$$

$$
30 x=36
$$

$x=\frac{36}{30}=\frac{6}{5}, 1 \frac{1}{5}$ or 1.2

Always cancel fractions so that they are in their lowest terms. Here both top and bottom can be divided by 6 .

Solving quadratic equations using factorisation p. 19

1 a $(x+3)(x+2)=0$ giving $x=-2$ or -3
b $(x+3)(x-4)=0$ giving $x=-3$ or 4
c $(2 x+7)(x+5)=0$ giving $x=-\frac{7}{2}$ or $x=-5$
2 a Area of triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
\frac{1}{2}(2 x+3)(x+4) & =9 \\
2 x^{2}+11 x+12 & =18 \\
2 x^{2}+11 x-6 & =0
\end{aligned}
$$

b $2 x^{2}+11 x-6=0$
$(2 x-1)(x+6)=0$
So $x=\frac{1}{2}$ or $x=-6$
Since x represents a height, only the positive value is valid.
$x=\frac{1}{2}$
c $x=0.5$, so base is $2 \times 0.5+3=4 \mathrm{~cm}$ and height is $0.5+4=4.5 \mathrm{~cm}$
3 By Pythagoras' theorem

$$
(x+1)^{2}+(x+8)^{2}=13^{2}
$$

$x^{2}+2 x+1+x^{2}+16 x+64=169$

$$
2 x^{2}+18 x-104=0
$$

Dividing by 2 gives

$$
x^{2}+9 x-52=0
$$

$$
(x-4)(x+13)=0
$$

$$
\text { so } x=4 \text { or } x=-13
$$

(Disregard $x=-13$ as x is a length.)
Hence, $x=4 \mathrm{~cm}$
(This also means the sides of the triangle are 5, 12 and 13 cm .)

Solving quadratic equations using the formula p. 21

1 Comparing the equation given, with $a x^{2}+b x+c$ gives $a=2, b=-1$ and $c=-7$.
Substituting these values into the quadratic equation formula gives:
$x=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(-7)}}{2(2)}$
$=\frac{1 \pm \sqrt{57}}{4}$
$=\frac{1+7.550}{4}$ or $\frac{1-7.550}{4}$ (to 4 s.f.)
$x=2.14$ or -1.64 (to 3 s.f.)
2 a $\frac{2 x+3}{x+2}=3 x+1$
$2 x+3=(x+2)(3 x+1)$
$2 x+3=3 x^{2}+x+6 x+2$
$0=3 x^{2}+5 x-1$
or $3 x^{2}+5 x-1=0$
b Comparing the equation given, with $a x^{2}+b x+c=0$ gives $a=3, b=5$ and $c=-1$
Substituting these values into the quadratic equation formula gives:
$x=\frac{-5 \pm \sqrt{(5)^{2}-4(3)(-1)}}{2(3)}$
$x=\frac{-5 \pm \sqrt{25+12}}{6}=\frac{-5 \pm \sqrt{37}}{6}=\frac{-5+\sqrt{37}}{6}$ or $\frac{-5-\sqrt{37}}{6}$
Hence $x=0.18$ or -1.85 (2 d.p.)

Solving simultaneous equations p. 24

1 a Firstly write the second equation so that in both equations the x value and the numerical value are aligned.

$$
\begin{align*}
& y=3 x-7 \tag{1}\\
& y=-2 x+3 \tag{2}
\end{align*}
$$

Notice that the coefficient of y (the number multiplying y, i.e. 1) is the same for both equations. We can eliminate y by subtracting equation (2) from equation (1).

Subtracting (1) - (2) we obtain
$0=5 x-10$
$5 x=10$
$x=2$
Substituting $x=2$ into equation (1) we obtain

$$
\begin{aligned}
y & =3(2)-7 \\
& =6-7 \\
& =-1
\end{aligned}
$$

Checking by substituting $x=2$ into equation (2) we obtain

$$
\begin{aligned}
y & =-2 x+3 \\
& =-2(2)+3 \\
& =-1
\end{aligned}
$$

Hence solutions are $x=2$ and $y=-1$.

$$
\text { b } \quad \begin{align*}
y & =2 x-6 \tag{1}\\
y & =-3 x+14 \tag{2}
\end{align*}
$$

Subtracting (1) - (2) we obtain
$0=5 x-20$
$x=4$
$y=2 \times 4-6$
$y=2$.
2 Equating expressions for y gives
$10 x^{2}-5 x-2=2 x-3$
$10 x^{2}-7 x+1=0$
Factorising this quadratic gives
$(5 x-1)(2 x-1)=0$
Hence $x=\frac{1}{5}$ or $x=\frac{1}{2}$
Substituting $x=\frac{1}{5}$ into $y=2 x-3$ gives
$y=-2 \frac{3}{5}$
Substituting $x=\frac{1}{2}$ into $y=2 x-3$ gives
$y=-2$
Hence $x=\frac{1}{5}$ and $y=-2 \frac{3}{5}$ or $x=\frac{1}{2}$ and $y=-2$
3 Equating the y values gives
$x^{2}+5 x-4=6 x+2$
$x^{2}-x-6=0$
$(x-3)(x+2)=0$
$x=3$ or -2
When $x=3, y=6 \times 3+2=20$
When $x=-2, y=6 \times(-2)+2=-10$
Points are $(3,20)$ and $(-2,-10)$

Solving inequalities p. 28

c $\quad \frac{x-5}{3}<7$

$\{x: x<26\}$

2 a $2 x-4>x+6$

$$
x-4>6
$$

$$
x>10
$$

b $4+x<6-4 x$

$$
4<6-5 x
$$

$$
-2<-5 x
$$

$$
\frac{-2}{-5}>x
$$

$$
x<0.4 \text { or } \frac{2}{5}
$$

c $2 x+9 \geq 5(x-3)$
$2 x+9 \geq 5 x-15$
$9 \geq 3 x-15$
$24 \geq 3 x$
$8 \geq x$
or $x \leq 8$
3 a

b (0, 2), (0,1), (0, 0), (0, -1), (1, 2), (1, 1), (1, 0), (2, 2), $(2,1),(3,2)$
$4 x^{2}>3 x+10$
$x^{2}-3 x-10>0$
$(x-5)(x+2)>0$
$x<-2$ and $x>5$

Problem solving using algebra p. 30

1 Let the larger number $=x$ and the smaller number $=y$.
$x+y=77$
$x-y=25$
Adding gives $2 x=102$ which gives $x=51$ so y must be 26.
2 Let the number added $=x$

$$
\begin{aligned}
& \frac{15+x}{31+x}=\frac{5}{6} \\
& 6(15+x)=5(31+x) \\
& 90+6 x=155+5 x \\
& x=65
\end{aligned}
$$

Check the answer $\frac{15+65}{31+65}=\frac{80}{96}=\frac{5}{6}$

3 Perimeter: $2 x+2 y=24$ so $x+y=12$
Area:

$$
\begin{equation*}
x y=27 \tag{1}
\end{equation*}
$$

From equation (1) $y=12-x$
Substitute into equation (2):

$$
x(12-x)=27
$$

So, $12 x-x^{2}=27$
Hence, $x^{2}-12 x+27=0$
Factorising gives $(x-3)(x-9)=0$
So $x=3$ or $x=9$
Substituting each of these values into equation (1) we have
$3+y=12$ or $9+y=12$, giving $y=9$ or $y=3$.
Hence, length $=9 \mathrm{~cm}$ and width $=3 \mathrm{~cm}$.

Use of functions p. 32

1 a $f(0)=\frac{1}{0-1}=-1$
b $f\left(-\frac{1}{2}\right)=\frac{1}{\frac{1}{2}-1}=\frac{1}{-\frac{3}{2}}=-\frac{2}{3}$
c Let $y=\frac{1}{x-1}$

$$
y(x-1)=1
$$

$x y-y=1$
$x y=y+1$
$x=\frac{y+1}{y}$
$\mathrm{f}^{-1}(x)=\frac{x+1}{x}$
2 a $\mathrm{fg}(x)=\sqrt{\left((x+4)^{2}-9\right)}$

$$
\begin{aligned}
& =\sqrt{x^{2}+8 x+16-9} \\
& =\sqrt{x^{2}+8 x+7}
\end{aligned}
$$

b $\operatorname{gf}(x)=\sqrt{\left(x^{2}-9\right)}+4$
c $\mathrm{gf}(3)=\sqrt{\left(3^{2}-9\right)}+4$

$$
=4
$$

Iterative methods p. 34

$1 x_{0}=1.5$
$x_{1}=1.5182945$
$x_{2}=1.5209353$
$x_{3}=1.5213157$
$x_{4}=1.5213705 \approx 1.521$ (correct to three decimal places)
Check value of $x^{3}-x-2$ for $x=1.5205,1.5215$

x	$f(x)$
1.5205	-0.005225
1.5215	0.0007151

Since there is a change of sign, $a=1.521$ is correct to three decimal places.

Equation of a straight line p. 38

1 a $2 y=4 x-5$

$$
y=2 x-\frac{5}{2}
$$

Comparing this to $y=m x+c$ we have gradient, $m=2$
b Gradient $=-\frac{1}{m}=-\frac{1}{2}$
c $y=-\frac{1}{2} x+5$ or $2 y=-x+10$
$2 y-y_{1}=m\left(x-x_{1}\right)$ where $m=3$ and $\left(x_{1}, y_{1}\right)=(2,3)$.
$y-3=3(x-2)$
$y-3=3 x-6$

$$
y=3 x-3
$$

$3 \quad y-y_{1}=m\left(x-x_{1}\right)$ where $m=2$ and $\left(x_{1}, y_{1}\right)=(-1,0)$

$$
y-0=2(x-(-1))
$$

$$
y=2(x+1)
$$

$$
y=2 x+2
$$

$-y+2 x+2=0$ (or $2 x-y+2=0$)
4 a Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{6-(-2)}=\frac{4}{8}=\frac{1}{2}$
b $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-2+6}{2}, \frac{0+4}{2}\right)=(2,2)$
c i Gradient $=-2$ (i.e invert $\frac{1}{2}$ and change the sign)

$$
\text { ii } \begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-2(x-2) \\
y-2 & =-2 x+4 \\
y & =-2 x+6
\end{aligned}
$$

Quadratic graphs p. 42

1 a $2 x^{2}-12 x+1=2\left[x^{2}-6 x+\frac{1}{2}\right]$

$$
\begin{aligned}
& =2\left[(x-3)^{2}-9+\frac{1}{2}\right] \\
& =2\left[(x-3)^{2}-\frac{17}{2}\right] \\
& =2(x-3)^{2}-17
\end{aligned}
$$

b i Turning point is at $(3,-17)$
ii At the roots,

$$
\begin{aligned}
2(x-3)^{2}-17 & =0 \\
2(x-3)^{2} & =17 \\
(x-3)^{2} & =\frac{17}{2} \\
x-3 & =\sqrt{\frac{17}{2}} \\
x & =\sqrt{\frac{17}{2}}+3
\end{aligned}
$$

Roots are $x=0.1$ and $x=5.9$ (1 d.p.)
c

2 a $y=(x+1)(x-5)$ or $y=x^{2}-4 x-5$
b $y=-(x-2)(x-7)$ or $y=-x^{2}+9 x-14$
3 a $x^{2}+12 x-16=(x+6)^{2}-36-16$ $=(x+6)^{2}-52$
b Turning point is at $(-6,-52)$

Recognising and sketching graphs of

 functions p. 461 a B
b F
c E
d A
e D
f C

2 a

b Read up from 60° to the graph, then read across until you hit the graph again.

$$
x=240^{\circ}
$$

3 a A
b G
c F
d E
Translations and reflections of functions p. 49
1 a $(3,5)$ (i.e. a movement of one unit to the right)
b $(-1,5)$ (i.e. a movement of three units to the left)
c $(2,-5)$ (i.e. a reflection in the x-axis)
d $(-2,5)$ (i.e. a reflection in the y-axis)
2
a

c

b

d

Equation of a circle and tangent to a circle p. 51
1 a Centre is $(0,0)$
b radius $=\sqrt{49}=7$
2 a $x^{2}+y^{2}=100$
b Gradient of radius to $(8,6)=\frac{6}{8}=\frac{3}{4}$
Gradient of tangent $=-\frac{4}{3}$
c $y-y_{1}=m\left(x-x_{1}\right)$
$y-6=\frac{4}{3}(x-8)$
$y=-\frac{4}{3} x+16 \frac{2}{3}$ or $3 y=-4 x+50$

Real-life graphs p. 54

1 a 08:00 to 09:00 is 1 hour (h), which is 1 unit on x axis. Average speed $=$ gradient $=\frac{2.5}{0.5}=5 \mathrm{~km} / \mathrm{h}$
b $15 \mathrm{mins}=0.25$ hours
c Average speed = gradient between 09:30 and 09:45

$$
=\frac{6}{0.25}=24 \mathrm{~km} / \mathrm{h}
$$

NAILIT:

When drawing a velocity-time graph, ensure that the axes are labelled with quantities and units.
Any values and letters for quantities that need to be found should be labelled on the graph.
a

b Total distance travelled = Area under the velocitytime graph
Use the formula for the area of a trapezium:
Distance $=\frac{1}{2}(15+10) \times u$

$$
=12.5 u
$$

Use the formula for the area of a trapezium.

The total distance travelled $=50 \mathrm{~m}$
Hence $50=12.5 u$

$$
u=4 \mathrm{~m} / \mathrm{s}
$$

c Velocity $=4 \mathrm{~m} / \mathrm{s}$ and time for deceleration $=3 \mathrm{~s}$
Deceleration $=$ gradient $=\frac{4}{3}=1.33 \mathrm{~m} / \mathrm{s}^{2}$

Since deceleration is negative acceleration, a positive answer is appropriate.

Generating sequences p. 56

1 a 17: sequence goes up by 3
b 3.0: sequence goes up by 0.2
c -12 : sequence goes down by 3
d 432: last term is multiplied by 6
e $\frac{1}{48}$: last term is multiplied by $\frac{1}{2}$
f $-\frac{1}{16}$: last term is multiplied by $-\frac{1}{2}$
2 Second term is $(-4)^{2}+1=17$ and third term is $17^{2}+1=290$
Second term is 17 , third term is 290.
3 Reverse the process: to find the preceding term, subtract 1 and halve.
Second term is $(12-1) \div 2=\frac{11}{2}=5.5$
First term is $(5.5-1) \div 2=\frac{4.5}{2}=2.25$
First term is 2.25 , second term is 5.5

The \boldsymbol{n} th term p. 58

a When $n=1,50-3(1)=47$
When $n=2,50-3(2)=44$
When $n=3,50-3(3)=41$
First three terms are 47, 44, 41
b Use the nth term formula to find the value of n when the nth term $=34$
$50-3 n=34$
$3 n=16$
$n=16 \div 3$
The value of n is not an integer so 34 is not a number in the sequence.
c Use the nth term formula to find the value of n when the nth term is less than zero (i.e. negative).
$50-3 n<0$ (subtracting 50 from both sides)
$-3 n<-50$ (dividing both sides and reversing the inequality sign)

$$
\begin{aligned}
& n>\frac{50}{3} \\
& n>16 \frac{2}{3}
\end{aligned}
$$

As n has to be an integer, its lowest possible value is $n=17$.
Check that you get a negative term when $n=17$ is put back into the nth term formula.

$$
\text { 17th term }=50-3 \times 17=50-51=-1
$$

2 a The first four terms are: $2 \times 3^{1}, 2 \times 3^{2}, 2 \times 3^{3}, 2 \times 3^{4}$

$$
=6,18,54,162
$$

b As the nth term formula is 2×3^{n} both 2 and 3 are factors, so 6 must also be a factor.
3 a Common difference between terms $=2$ so formula will start with $2 n$.
When $n=1$, you need to subtract 3 from $2 n$ to get an answer of -1 .
Therefore nth term $=2 n-3$
b $59=2 x-3$
$2 x=62$

$$
x=31
$$

4

First differences
Second differences

| 4, | 17, | 38, | 67 |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 21 | 29 | |

As a second difference is needed before a constant difference is found, there is an n^{2} term in the nth term. The number in front of this n^{2} will be $\frac{8}{2}=4$.
So first part of the nth term will be $4 n^{2}$.

n	1	2	3	4
Term	4	17	38	67
$4 n^{2}$	4	16	36	64
Term $-4 n^{2}$	0	1	2	3

Use this set of information to work out the linear part of the sequence (the part with an n term and a number).
Difference 1
This means that the linear sequence will start with n.
When $n=2$, 'Term $-4 n^{2}$ ' is 1 , not 2 , so if n is in the term you also need to subtract 1 .
This makes the linear part of the sequence $n-1$.

Check it with a different value of n. When $n=3, n-1$ equals 2 . This is the correct value for 'Term $-4 n^{2}$ '.
Combining the terms gives nth term $=4 n^{2}+n-1$

Arguments and proofs p. 60

1 a $2 n$ is always even as it has 2 as a factor. Adding 1 to an even number always gives an odd number. The statement is true.
b $\quad x^{2}-9=0$ so $x^{2}=9$ and $x=\sqrt{9}= \pm 3$
The statement is false.
c n could be a decimal such as 4.25 so squaring it would not give an integer.
The statement is false.
d If n was 1 , or a fraction smaller than 1 , this would not be true.
The statement is false.
2 Let the consecutive integers be $n, n+1, n+2$ and $n+3$, where n is an integer that can be either odd or even.
Sum of the integers $=n+n+1+n+2+n+3$

$$
=4 n+6=2(2 n+3)
$$

As 2 is a factor of this expression, the sum of four consecutive integers must be a multiple of 2 , and therefore even.
3 Let the consecutive integers be $x, x+1$ and $x+2$, where x is an integer that can be either odd or even.
Sum of the integers $=x+x+1+x+2=3 x+3$

$$
=3(x+1)
$$

As 3 is a factor of this expression, the sum of three consecutive integers must be a multiple of 3 .
4 a The numerator is larger than the denominator so the fraction will always be greater than 1. The statement is false.
b As a is larger than b, squaring a will result in a larger number than squaring b. Hence $a^{2}>b^{2}$ so the statement is false.
c The square root of a number can have two values, one positive and the other negative so, this statement is false.

Review it! p. 61

1 a $-3(3 x-4)=-9 x+12$
b $4 x+3(x+2)-(x+2)=4 x+3 x+6-x-2$

$$
=6 x+4
$$

c $(x+3)(2 x-1)(3 x+5)=\left(2 x^{2}+5 x-3\right)(3 x+5)$

$$
=6 x^{3}+25 x^{2}+16 x-15
$$

2 a $2 x^{2}+7 x-4=(2 x-1)(x+4)$
b $2 x^{2}+7 x-4=0$
$x=\frac{1}{2}$ or $x=-4$
3 a $\left(2 x^{2} y\right)^{3}=8 x^{6} y^{3}$
b $2 x^{-3} \times 3 x^{4}=6 x$
c $\frac{15 a^{3} b}{3 a^{3} b^{2}}=\frac{5}{b}$
4

$$
\begin{align*}
3 x+2 y & =8 \tag{1}\\
5 x+y & =11
\end{align*}
$$

(2) $\times 2: 10 x+2 y=22$ (3)

$$
\text { (3) } \begin{aligned}
-(1): 7 x & =14 \\
x & =2
\end{aligned}
$$

Substitute into (2) to find y

$$
\begin{aligned}
5 \times 2+y & =11 \\
y & =11-10 \\
y & =1
\end{aligned}
$$

5 a $\frac{3}{x+7}=\frac{2-x}{x+1}$
$3(x+1)=(2-x)(x+7)$
$3 x+3=2 x+14-x^{2}-7 x$
$3 x+3=-x^{2}-5 x+14$
$x^{2}+8 x-11=0$
b $x^{2}+8 x-11=0$
$x=\frac{-8 \pm \sqrt{(8)^{2}-4 \times 1 \times(-11)}}{2 \times 1}$
$x=\frac{-8 \pm \sqrt{108}}{2}$
$x=\frac{-8 \pm 6 \sqrt{3}}{2}$
$x=-4+3 \sqrt{3}$ or $x=-4-3 \sqrt{3}$
So $x=1.20$ or $x=-9.20$ (to 2 d.p.)
$6 \frac{3 y-x}{z}=a x+2$
$3 y-x=z(a x+2)$
$3 y-x=a x z+2 z$
$3 y-2 z=a x z+x$
$3 y-2 z=x(a z+1)$

$$
x=\frac{3 y-2 z}{a z+1}
$$

7 a $y=\frac{x}{3}+5$
$3 y=x+15$
$x=3 y-15$
Now replace x with $\mathrm{f}^{-1}(x)$ and y with x.
$\mathrm{f}^{-1}(x)=3 x-15$ or $\mathrm{f}^{-1}(x)=3(x-5)$
b $\quad \mathrm{fg}(x)=\frac{\left(2(x)^{2}+k\right)}{3}+5$
So $f(2)=\frac{(8+k)}{3}+5$
We know that $\mathrm{fg}(2)=10$

$$
\begin{aligned}
\text { So } \frac{(8+k)}{3}+5 & =10 \\
(8+k)+15 & =30 \\
8+k & =15 \\
k & =7
\end{aligned}
$$

8 a Let $n=1: 30-4 \times 1=26$
Let $n=2: 30-4 \times 2=22$
Let $n=3: 30-4 \times 3=18$
First three terms are 26, 22, 18.
b $30-4 n<0$

$$
\begin{aligned}
-4 n & <-30 \\
n & >\frac{-30}{-4}
\end{aligned}
$$

$$
n>7.5
$$

n must be an integer, so the lowest possible value of n is $n=8$

Therefore the first negative term of the sequence is: $30-4 \times 8=-2$
$9 x=4, y=3$
$(4)^{2}+(3)^{2}=16+9=25$
So $x^{2}+y^{2}>21$
Hence the point $(4,3)$ lies outside the circle.
$10(\sqrt{x}+\sqrt{9 y})(\sqrt{x}-3 \sqrt{y})$
Simplify terms inside the brackets if possible
$(\sqrt{x}+3 \sqrt{y})(\sqrt{x}-3 \sqrt{y})=x+3 \sqrt{x y}-3 \sqrt{x y}-9 y$

$$
=x-9 y
$$

11 a $2 x^{2}+8 x+1=2\left(x^{2}+4 x\right)+1$

$$
\begin{aligned}
& =2(x+2)^{2}-8+1 \\
& =2(x+2)^{2}-7
\end{aligned}
$$

b i Turning point is $(-2,-7)$.
ii For $2 x^{2}+8 x+1=0$

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{8^{2}-4 \times 2 \times 1}}{2 \times 2} \\
& x=\frac{-8 \pm \sqrt{56}}{4} \\
& x=\frac{-8 \pm 2 \sqrt{14}}{4} \\
& x=\frac{-4 \pm \sqrt{14}}{2}
\end{aligned}
$$

So roots are at $x=-3.9$ and $x=-0.1$ (1 d.p.)
c

12 Perimeter of $A B C D=2 \times(4 x+(2 x-3))=12 x-6$
Perimeter of $E F G=2 x-1+x+9+5 x-2=8 x+6$
Equate the perimeters to find x
$12 x-6=8 x+6$

$$
\begin{aligned}
4 x & =12 \\
x & =3
\end{aligned}
$$

The height of the triangle, $E F=2 \times 3-1=5 \mathrm{~cm}$
The base of the triangle, $E G=3+9=12 \mathrm{~cm}$
Area of the triangle $=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
13 Side $A B$ is parallel to side $C D$, so $k=5$.
Gradient of $B D=\frac{5-(-2)}{-1-(-2)}=\frac{7}{1}=7$
Using point $B(-2,-2)$
$y-(-2)=7(x-(-2))$
$y+2=7 x+14$
Equation of $B D$ is $y=7 x+12$
$14 x^{2}+y^{2}=4$
$2 y-x=2$
Rearrange (2) for y : $y=\frac{1}{2} x+1$
Substitute (3) into (1):
$x^{2}+\left(\frac{1}{2} x+1\right)^{2}=4$
$x^{2}+\frac{x^{2}}{4}+x+1=4$
$5 x^{2}+4 x+4=16$
$5 x^{2}+4 x-12=0$
$(5 x-6)(x+2)=0$
$x=\frac{6}{5}=1.2$ or $x=-2$
Substitute into (2) to find y
So $x=\frac{6}{5}, y=\frac{8}{5}$ or $x=-2, y=0$

Exam practice answers

Simple algebraic techniques p. 64

1 a formula \mathbf{c} expression \mathbf{e} formula
b identity \mathbf{d} identity
$24 x+3 x \times 2 x-3 x=4 x+6 x^{2}-3 x=x+6 x^{2}$
$3 y^{3}-y=(1)^{3}-1=0$ so $y=1$ is correct.
$y^{3}-y=(-1)^{3}-(-1)=-1+1=0$ so $y=-1$ is correct.
4 a $6 x-(-4 x)=6 x+4 x=10 x$
b $x^{2}-2 x-4 x+3 x^{2}=4 x^{2}-6 x$
c $(-2 x)^{2}+6 x \times 3 x-4 x^{2}=4 x^{2}+18 x^{2}-4 x^{2}=18 x^{2}$
a $\quad s=\frac{3^{2}-1^{2}}{2 \times 2}=\frac{8}{4}=2$
b $s=\frac{(-4)^{2}-3^{2}}{2 \times 4}=\frac{7}{8}$
c $s=\frac{5^{2}-(-2)^{2}}{2 \times(-7)}=\frac{21}{-14}=\frac{3}{2}$

Removing brackets p. 65

a $8(3 x-7)=8 \times 3 x-8 \times 7$

$$
=24 x-56
$$

b $-3(2 x-4)=-3 \times 2 x-3 \times(-4)$

$$
=-6 x+12
$$

2 a $3(2 x-1)-3(x-4)=6 x-3-3 x+12$

$$
=3 x+9
$$

b $4 y(2 x+1)+6(x-y)=8 x y+4 y+6 x-6 y$

$$
=8 x y+6 x-2 y
$$

c $5 a b(2 a-b)=10 a^{2} b-5 a b^{2}$
d $x^{2} y^{3}(2 x+3 y)=2 x^{3} y^{3}+3 x^{2} y^{4}$
3 a $(m-3)(m+8)=m^{2}+8 m-3 m-24$

$$
=m^{2}+5 m-24
$$

b $(4 x-1)(2 x+7)=8 x^{2}+28 x-2 x-7$

$$
=8 x^{2}+26 x-7
$$

c $(3 x-1)^{2}=(3 x-1)(3 x-1)$

$$
\begin{aligned}
& =9 x^{2}-3 x-3 x+1 \\
& =9 x^{2}-6 x+1
\end{aligned}
$$

d $(2 x+y)(3 x-y)=6 x^{2}-2 x y+3 x y-y^{2}$

$$
=6 x^{2}+x y-y^{2}
$$

4 a $(x+5)(x+2)=x^{2}+2 x+5 x+10$

$$
=x^{2}+7 x+10
$$

b $(x+4)(x-4)=x^{2}-4 x+4 x-16$

$$
=x^{2}-16
$$

c $(x-7)(x+1)=x^{2}+x-7 x-7$

$$
=x^{2}-6 x-7
$$

d $(3 x+1)(5 x+3)=15 x^{2}+9 x+5 x+3$

$$
=15 x^{2}+14 x+3
$$

5
a $(x+3)(x-1)(x+4)=\left(x^{2}-x+3 x-3\right)(x+4)$

$$
\begin{aligned}
& =\left(x^{2}+2 x-3\right)(x+4) \\
& =x^{3}+4 x^{2}+2 x^{2}+8 x-3 x-12 \\
& =x^{3}+6 x^{2}+5 x-12
\end{aligned}
$$

b $\quad(3 x-4)(2 x-5)(3 x+1)=\left(6 x^{2}-15 x-8 x+20\right)(3 x+1)$

$$
\begin{aligned}
= & \left(6 x^{2}-23 x+20\right)(3 x+1) \\
= & 18 x^{3}+6 x^{2}-69 x^{2}-23 x+60 x \\
& +20 \\
= & 18 x^{3}-63 x^{2}+37 x+20
\end{aligned}
$$

Factorising p. 66

1 a $25 x^{2}-5 x y=5 x(5 x-y)$
b $4 \pi r^{2}+6 \pi x=2 \pi\left(2 r^{2}+3 x\right)$
c $6 a^{3} b^{2}+12 a b^{2}=6 a b^{2}\left(a^{2}+2\right)$
2 a $9 x^{2}-1=(3 x+1)(3 x-1)$
b $16 x^{2}-4=(4 x+2)(4 x-2)$

$$
=4(2 x+1)(2 x-1)
$$

3 a $a^{2}+12 a+32=(a+4)(a+8)$
b $p^{2}-10 p+24=(p-6)(p-4)$
4 a $a^{2}+12 a=a(a+12)$
b $\quad b^{2}-9=(b+3)(b-3)$
c $x^{2}-11 x+30=(x-5)(x-6)$
5 a $3 x^{2}+20 x+32=(3 x+8)(x+4)$
b $3 x^{2}+10 x-13=(3 x+13)(x-1)$
c $2 x^{2}-x-10=(2 x-5)(x+2)$
$6 \frac{x+15}{2 x^{2}-3 x-9}+\frac{3}{2 x+3}=\frac{x+15}{(2 x+3)(x-3)}+\frac{3}{(2 x+3)}$

$$
=\frac{x+15+3(x-3)}{(2 x+3)(x-3)}
$$

$$
=\frac{4 x+6}{(2 x+3)(x-3)}
$$

$$
=\frac{2(2 x+3)}{(2 x+3)(x-3)}
$$

$$
=\frac{2}{(x-3)}
$$

$7 \frac{1}{8 x^{2}-2 x-1} \div \frac{1}{4 x^{2}-4 x+1}=\frac{1}{8 x^{2}-2 x-1} \times\left(4 x^{2}-4 x+1\right)$

$$
\begin{aligned}
& =\frac{1}{(4 x+1)(2 x-1)} \times(2 x-1)(2 x-1) \\
& =\frac{2 x-1}{4 x+1}
\end{aligned}
$$

Changing the subject of a formula p. 68

$1 \quad P V=n R T$
$T=\frac{P V}{n R}$
$22 y+4 x-1=0$

$$
\begin{aligned}
2 y & =1-4 x \\
y & =\frac{1-4 x}{2}
\end{aligned}
$$

$3 \quad v=u+a t$

$$
a t=v-u
$$

$$
a=\frac{(v-u)}{t}
$$

$4 y=\frac{x}{5}-m$
$\frac{x}{5}=y+m$
$x=5(y+m)$
$5 E=\frac{1}{2} m v^{2}$
$v^{2}=\frac{2 E}{m}$
$v=\sqrt{\frac{2 E}{m}}$
6 a $V=\frac{1}{3} \pi r^{2} h$
$r^{2}=\frac{3 V}{\pi h}$
$r=\sqrt{\frac{3 V}{\pi h}}$
b $\quad r=\sqrt{\frac{3 \times 100}{\pi \times 8}}$

```
7 a \(y=3 x-9\)
        \(3 x=y+9\)
        \(x=\frac{y+9}{3}\)
    b \(x=\frac{3+9}{4}\)
        \(=4\)
\(83 y-x=a x+2\)
    \(3 y-x-2=a x\)
        \(3 y-2=a x+x\)
        \(3 y-2=x(a+1)\)
        \(x=\frac{3 y-2}{a+1}\)
\(9 \quad\) a \(\quad \mathbf{c}^{2}=\frac{\left(16 a^{2} b^{4} c^{2}\right)^{\frac{1}{2}}}{4 a^{2} b}\)
    \(c^{2}=\frac{4 a b^{2} c}{4 a^{2} b}\)
    \(c^{2}=\frac{b c}{a}\)
    \(c=\frac{b}{a}\)
b upper bound of \(a=2.85\)
lower bound of \(a=2.75\)
upper bound of \(b=3.25\)
lower bound of \(b=3.15\)
upper bound for \(c=\frac{\text { upper bound for } b}{\text { lower bound for } a}=\frac{3.25}{2.75}=1.18\) (to 3 s.f.)
lower bound for \(c=\frac{\text { lower bound for } b}{\text { upper bound for } a}=\frac{3.15}{2.85}=1.11=(\) to 3 s.f. \()\)
```


Solving linear equations p. 70

Solving quadratic equations using factorisation p. 71

1 a $x^{2}-7 x+12=(x-3)(x-4)$
b $x^{2}-7 x+12=0$
$(x-3)(x-4)=0$
So $x-3=0$ or $x-4=0$, giving $x=3$ or $x=4$
2 a $2 x^{2}+5 x-3=(2 x-1)(x+3)$
b $2 x^{2}+5 x-3=0$
$(2 x-1)(x+3)=0$
So $2 x-1=0$ or $x+3=0$, giving $x=\frac{1}{2}$ or $x=-3$
$3 x^{2}-3 x-20=x-8$
$x^{2}-4 x-12=0$
$(x+2)(x-6)=0$
So $x+2=0$ or $x-6=0$, giving $x=-2$ or $x=6$
4 a $\quad x(x-8)-7=x(5-x)$
$x^{2}-8 x-7=5 x-x^{2}$
$2 x^{2}-13 x-7=0$
b $2 x^{2}-13 x-7=0$
$(2 x+1)(x-7)=0$
So $2 x+1=0$ or $x-7=0$, giving $x=\frac{1}{2}$ or $x=7$
5 area of trapezium $=\frac{1}{2}(a+b) h$

$$
\begin{aligned}
& =\frac{1}{2}(x+4+x+8) x \\
& =\frac{1}{2}(2 x+12) x \\
& =(x+6) x \\
& =x^{2}+6 x
\end{aligned}
$$

area $=16 \mathrm{~cm}^{2}$ so $x^{2}+6 x=16$

$$
\begin{aligned}
& x^{2}+6 x-16=0 \\
& (x+8)(x-2)=0
\end{aligned}
$$

Solving gives $x=-8$ or $x=2$
$x=-8$ is impossible as x is the height and so cannot be negative.
Hence $x=2 \mathrm{~cm}$
Solving quadratic equations using the formula p. 73
1 a

$$
\begin{aligned}
\frac{3}{x+7} & =\frac{2-x}{x+1} \\
3(x+1) & =(2-x)(x+7) \\
3 x+3 & =2 x+14-x^{2}-7 x \\
3 x+3 & =-x^{2}-5 x+14
\end{aligned}
$$

$$
x^{2}+8 x-11=0
$$

b $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-8 \pm \sqrt{8^{2}-4 \times 1 \times(-11)}}{2 \times 1}$

$$
=\frac{-8 \pm \sqrt{64+44}}{2}
$$

$$
=\frac{-8 \pm \sqrt{108}}{2}
$$

$$
=\frac{-8+\sqrt{108}}{2} \text { or } \frac{-8-\sqrt{108}}{2}
$$

$$
=1.1962 \text { or }-9.1962
$$

$$
x=1.20 \text { or }-9.20 \text { (to } 2 \text { d.p.) }
$$

2 area $=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2}(3 x+1)(2 x+3)
$$

$$
=\frac{1}{2}\left(6 x^{2}+9 x+2 x+3\right)
$$

$$
=\frac{1}{2}\left(6 x^{2}+11 x+3\right)
$$

$$
=3 x^{2}+5.5 x+1.5
$$

area $=40$, so $3 x^{2}+5.5 x+1.5=40$

Hence, $3 x^{2}+5.5 x-38.5=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-5.5 \pm \sqrt{5.5^{2}-4 \times 3 \times(-38.5)}}{2 \times 3}$
$=\frac{-5.5 \pm \sqrt{492.25}}{6}$
$=\frac{-5.5+\sqrt{492.25}}{6}=$ or $\frac{-5.5-\sqrt{492.25}}{6}$

$$
=2.78 \text { or }-4.61 \text { (to } 2 \text { d.p.) }
$$

$x=-4.61$ would give negative lengths, which are impossible.
$x=2.78 \mathrm{~cm}$ (to 2 d.p.)
$3 x^{2}-2 x-9=x-8$
$x^{2}-3 x-1=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{3 \pm \sqrt{(-3)^{2}-4 \times 1 \times(-1)}}{2 \times 1}$
$=\frac{3 \pm \sqrt{9+4}}{2}$
$=\frac{3 \pm \sqrt{13}}{2}$
$=\frac{3+\sqrt{13}}{2}=$ or $\frac{3-\sqrt{13}}{2}$
$x=3.30$ or -0.30 (to 2 d.p.)
Solving simultaneous equations p. 74
$12 x-3 y=-5$
$5 x+2 y=16$
(2)

Equation (1) $\times 2$ and equation (2) $\times 3$ gives:

$$
\begin{aligned}
4 x-6 y & =-10 \\
15 x+6 y & =48
\end{aligned}
$$

Equation (3) + equation (4) gives:

$$
\begin{aligned}
19 x & =38 \\
x & =2
\end{aligned}
$$

Substituting $x=2$ into equation (1):

$$
\begin{aligned}
2 \times 2-3 y & =-5 \\
4-3 y & =-5 \\
3 y & =9 \\
y & =3
\end{aligned}
$$

Checking by substituting $x=2$ and $y=3$ into equation (2) gives:
$5 \times 2+2 \times 3=10+6=16$
$x=2$ and $y=3$
2 a Table of values for plotting graph of $y=3 x-2$:

x	1	2	3	4
y	1	4	7	10

b Table of values for plotting graph of $y=10-x$:

x	0	5	10
y	10	5	0

The graphs intersect at $(3,7)$.

$$
\begin{equation*}
x=3, y=7 \tag{1}
\end{equation*}
$$

$3 x-y=3$
$x^{2}+y^{2}=9$
(2)

Rearrange equation (1) as $y=x-3$.
Substitute in equation (2):

$$
\begin{aligned}
x^{2}+(x-3)^{2} & =9 \\
x^{2}+x^{2}-6 x+9 & =9 \\
2 x^{2}-6 x & =0 \\
x^{2}-3 x & =0 \\
x(x-3) & =0
\end{aligned}
$$

$x=0$ or $x=3$
Substituting into equation (1) gives:
$x=0, y=-3$ or $x=3, y=0$

Solving inequalities p. 75

$$
\begin{aligned}
& \text { a } \quad \frac{x+5}{4} \geq-1 \\
& x+5 \geq-4 \\
& x \geq-9 \\
& \text { b } 3 x-4>4 x+8 \\
& -x-4>8 \\
& -x>12 \\
& x<-12
\end{aligned}
$$

2

3 a

b Coordinates of points that lie in the shaded region or on the solid line:
$(1,2),(1,1),(1,0),(1,-1),(0,0),(0,-1)$,
$4 x^{2}+2 x \leq 3$
$x^{2}+2 x-3 \leq 0$
Solving $x^{2}+2 x-3=0$:
$(x-1)(x+3)=0$, giving $x=1$ and $x=-3$
Sketch of the curve $y=x^{2}+2 x-3$:

From graph, $x^{2}+2 x-3 \leq 0$ when:
$-3 \leq x \leq 1$
5 Solving $x^{2}-2 x-15=0$:
$(x-5)(x+3)=0$, giving $x=5$ and $x=-3$
Sketch of the curve $y=x^{2}-2 x-15$:

From graph, $x^{2}-2 x-15>0$ when:
$x<-3$ and $5<x$

Problem solving using algebra p. 76

1 Let width $=x$
length $=x+1$
perimeter $=x+x+1+x+x+1=4 x+2$
perimeter $=26$ so

$$
\begin{aligned}
4 x+2 & =26 \\
4 x & =24 \\
x & =6
\end{aligned}
$$

width $=6 \mathrm{~m}$ and length $=7 \mathrm{~m}$
area $=6 \times 7=42 \mathrm{~m}^{2}$
2 Let cost of adult ticket $=x$ and cost of child ticket $=y$
$2 x+5 y=35$
$3 x+4 y=38.5$
(2)

Equation (1) $\times 3$ and equation (2) $\times 2$ gives:
$6 x+15 y=105$
$6 x+8 y=77$
Equation (3) - equation (4) gives:
$7 y=28$
$y=4$

Substituting $y=4$ into equation (1) gives:
$2 x+20=35$

$$
\begin{aligned}
2 x & =15 \\
x & =7.5
\end{aligned}
$$

cost of adult ticket $=£ 7.50$
cost of child ticket $=£ 4$
3 a Let Rachel be x years and Hannah be y years.
$x y=63$
$(x+2)(y+2)=99$
$x y+2 x+2 y+4=99$
Substitute for $x y$:
$63+2 x+2 y+4=99$
$2 x+2 y=32$
$x+y=16$
The sum of their ages is 16 years.
b $y=x-2$
$x+x-2=x+y$
$2 x-2=16$
$2 x=18$
$x=9$
Rachel is 9 years old.

Use of functions p. 77

1 a $f(3)=5 \times 3+4=19$
b $\operatorname{Set} \mathrm{f}(x)=-1$
$5 x+4=-1$
$5 x=-5$
$x=-1$
2 a $f g(x)=f(g(x))=f(x-6)=(x-6)^{2}$
b $\quad \mathrm{gf}(x)=\mathrm{g}\left(\mathrm{f}(x)=\mathrm{g}\left(x^{2}\right)=x^{2}-6\right.$
3 a $f(5)=\sqrt{5+4}=\sqrt{9}=3$ or -3
b $\quad \mathrm{gf}(x)=2(\sqrt{x+4})^{2}-3$

$$
=2(x+4)-3
$$

$$
=2 x+5
$$

4 Let $y=5 x^{2}+3$

$$
x=\sqrt{\frac{y-3}{5}}
$$

$$
\mathrm{f}^{-1}(x)=\sqrt{\frac{x-3}{5}}
$$

Iterative methods p. 78

1 Let $\mathrm{f}(x)=2 x^{3}-2 x+1$
$f(-1)=2(-1)^{3}-2(-1)+1=1$
$f(-1.5)=2(-1.5)^{3}-2(-1.5)+1=-2.75$
There is a sign change of $\mathrm{f}(x)$, so there is a solution between $x=-1$ and $x=-1.5$.
$2 x_{1}=\left(x_{0}\right)^{3}+\frac{1}{9}=(0.1)^{3}+\frac{1}{9}=00.1121111111$
$x_{2}=\left(x_{1}\right)^{3}+\frac{1}{9}=(0.1121111111)^{3}+\frac{1}{9}=0.1125202246$
$x_{3}=\left(x_{2}\right)^{3}+\frac{1}{9}=(0.1125202246)^{3}+\frac{1}{9}=0.1125357073$
3 a $x_{1}=1.5182945$
$x_{2}=1.5209353$
$x_{3}=1.5213157$
$x_{4}=1.5213705 \approx 1.521$ (to 3 d.p.)
b Checking value of $x^{3}-x-2$ for $x=1.5205,1.5215$:

$$
\text { When } \begin{aligned}
x & =1.5205 & & \mathrm{f}(1.5205)=-0.0052 \\
x & =1.5215 & & \mathrm{f}(1.5215)=0.0007
\end{aligned}
$$

Since there is a change of sign, the root is 1.521 correct to 3 decimal places.

4 a i

ii There is a real root of $x^{3}+x-3=0$ where the graphs of $y=x^{3}$ and $y=3-x$ intersect. The graphs intersect once so there is one real root of the equation $x^{3}+x-3=0$.
b $\quad x_{1}=1.216440399$
$x_{2}=1.212725591$
$x_{3}=1.213566964$
$x_{4}=1.213376503$
$x_{5}=1.213419623$
$x_{6}=1.213409861=1.2134$ (to 4 d.p.)

Equation of a straight line p. 80

1 Comparing the equation with the equation of a straight line, $y=m x+c$:
$y=-2 x+3$
gradient of line, $m=-2$ (line has a negative gradient)
intercept on the y-axis, $c=3$
Correct line is A
2 a gradient, $m=\frac{\text { change in } y \text {-values }}{\text { change in } x \text {-values }}=\frac{4}{3}$
b gradient of $C D, m=\frac{1-5}{5-(-3)}=\frac{-4}{8}=\frac{1}{2}$
Substituting in $y-y_{1}=m\left(x-x_{1}\right)$:
$y-1=\frac{1}{2}(x-5)$
$y=\frac{1}{2} x+\frac{7}{2}$ or $x+2 y=7$
c M is at $\left(\frac{-3+5}{2}, \frac{5+1}{2}\right)=(1,3)$
gradient of perpendicular to $C D=\frac{-1}{\frac{1}{2}}=2$
Substituting in $y-y_{1}=m\left(x-x_{1}\right)$:
$y-3=2(x-1)$
$y=2 x+1$
3 P is the point (x, y).
gradient of line $O P=\frac{y}{x}=3$, so $y=3 x$
Using Pythagoras' theorem:
$O P^{2}=x^{2}+y^{2}$
$12^{2}=x^{2}+y^{2}$
$12^{2}=x^{2}+(3 x)^{2}$

$$
\begin{aligned}
144 & =x^{2}+9 x^{2} \\
144 & =10 x^{2} \\
14.4 & =x^{2} \\
x & =3.8 \text { (to } 1 \text { d.p.) } \\
y & =3 x \\
& =3 \times 3.8 \\
& =11.4
\end{aligned}
$$

P is the point $(3.8,11.4)$ (to 1 d.p.).

Quadratic graphs p. 82

1 a

$$
\begin{aligned}
& x^{2}+4 x+1=0 \\
&(x+2)^{2}-4+1=0 \\
&(x+2)^{2}=3 \\
& x+2= \pm \sqrt{3} \\
& x=\sqrt{3}-2 \text { or }-\sqrt{3}-2 \\
& x=-0.3 \text { or }-3.7 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

b $x^{2}+4 x+1=(x+2)^{2}-3$, so turning point is at $(-2,-3)$.

$25 x^{2}-20 x+10=5\left[x^{2}-4 x+2\right]$

$$
\begin{aligned}
& =5\left[(x-2)^{2}-4+2\right] \\
& =5(x-2)^{2}-10
\end{aligned}
$$

$a=5, b=-2$ and $c=-10$
$32 x^{2}+12 x+3=2\left[x^{2}+6 x+\frac{3}{2}\right]$

$$
\begin{aligned}
& =2\left[(x+3)^{2}-9+\frac{3}{2}\right] \\
& =2\left[(x+3)^{2}-\frac{15}{2}\right] \\
& =2(x+3)^{2}-15
\end{aligned}
$$

$$
a=2, b=3 \text { and } c=-15
$$

Recognising and sketching graphs of functions p. 83

1

Equation	Graph
$y=x^{2}$	B
$y=2^{x}$	D
$y=\sin x^{\circ}$	E
$y=x^{3}$	C
$y=x^{2}-6 x+8$	A
$y=\cos x^{\circ}$	F

2

b

$33 \cos \theta=1$
$\cos \theta=\frac{1}{3}$

$\theta=\cos ^{-1}\left(\frac{1}{3}\right)=70.5^{\circ}$ (to 1 d.p.)
From the graph, $\cos \theta$ is also $\frac{1}{3}$ when $\theta=360-70.5=289.5^{\circ}$ $\theta=70.5^{\circ}$ or 289.5° (to 1 d.p.)

Translations and reflections of functions p. 84

1 a $y=-\mathrm{f}(x)$ is a reflection in the x-axis of the graph $y=\mathrm{f}(x)$
The points on the x-axis stay in the same place and the turning point at $(2,-4)$ is reflected to become a turning point at $(2,4)$.

b $y=\mathrm{f}(x-2)$ is a translation by $\binom{2}{0}$ of the graph $y=\mathrm{f}(x)$.
The y-coordinates stay the same but the x-coordinates are shifted to the right by 2 units.

2 a $y=-\mathrm{f}(x)$: reflection in the x-axis.
b $y=\mathrm{f}(x)+2$: translation of 2 units vertically upwards.
c $\quad y=\mathrm{f}(-x)$: reflection in the y-axis.

3 The cosine graph is shifted two units in the vertical direction, i.e. a translation of $\binom{0}{2}$.

Equation of a circle and tangent to a circle p. 85
a $x^{2}+y^{2}=25$
This equation is in the form $x^{2}+y^{2}=r^{2}$.
$r=\sqrt{25}=5$
b $x^{2}+y^{2}-49=0$
$x^{2}+y^{2}=49$
This equation is in the form $x^{2}+y^{2}=r^{2}$.
$r=\sqrt{49}=7$
c $4 x^{2}+4 y^{2}=16$
$x^{2}+y^{2}=4$
This equation is in the form $x^{2}+y^{2}=r^{2}$.

$$
r=\sqrt{4}=2
$$

2 Radius of the circle $=\sqrt{21}=4.58$
Distance of the point $(4,3)$ from the centre of the circle $(0,0)$ $=\sqrt{16+9}=\sqrt{25}=5$
This distance is greater than the radius of the circle, so the point lies outside the circle.
3 a

Using Pythagoras' theorem:

$O P^{2}=5^{2}+7^{2}$
$=25+49$
$=74$
$O P=$ radius of the circle $=\sqrt{74}$
b equation of a circle, radius r, centre the origin: $x^{2}+y^{2}=r^{2}$ $x^{2}+y^{2}=74$
c gradient of line $O P=\frac{7}{5}$
gradient of the tangent at $P=-\frac{5}{7}$
Substituting in $y-y_{1}=m\left(x-x_{1}\right)$:

$$
\begin{aligned}
y-7 & =-\frac{5}{7}(x-5) \\
7 y-49 & =-5 x+25 \\
7 y & =-5 x+74 \\
y & =-\frac{5}{7} x+\frac{74}{7}
\end{aligned}
$$

Real-life graphs p. 86

1 a acceleration = gradient of line $=\frac{10}{10}=1 \mathrm{~m} / \mathrm{s}^{2}$
b total distance travelled $=$ area under the velocity-time graph

$$
=\frac{1}{2}(30+15) \times 10=225 \mathrm{~m}
$$

2 a The graph is a straight line starting at the origin, so this represents constant acceleration from rest of $\frac{15}{6}=2.5 \mathrm{~m} / \mathrm{s}^{2}$.
b The gradient decreases to zero, so the acceleration decreases to zero.
c area $=$ area of 3 trapeziums

area $=\frac{1}{2}(15+18.5) \times 2+\frac{1}{2}(18.5+21.5) \times 2+$ $\frac{1}{2}(21.5+22.5) \times 2$

$$
=117.5
$$

distance travelled between A and $B=118 \mathrm{~m}$ (to nearest integer)
d It will be a slight underestimate, as the curve is always above the straight lines forming the tops of the trapeziums.

Generating sequences p. 87

1 a $\mathbf{i} \frac{1}{2}$ (term-to-term rule is divide by 2)
ii 243 (term-to-term rule is multiply by 3)
iii 21 (term-to-term rule is add 4)
b 4th term -1 st term $=-12-27=-39$
common difference $=-39 \div 3=-13$
missing terms are 14,1
2 3rd term $=2 \times 1-5=-3$
4th term $=2 \times-3-5=-11$

3 a 25, 36 (square numbers)
b 15, 21 (triangular numbers)
c 8,13 (Fibonacci numbers)

The \boldsymbol{n} th term p. 88

1 a

n	1		2		3		4
Term	2		6		10		14
Difference		4		4		4	

nth term starts with $4 n$

$4 n$	4	8	12	16
Term $-4 n$	-2	-2	-2	-2

nth term $=4 n-2$
b nth term $=4 n-2=2(2 n-2)$
2 is a factor, so the nth term is divisible by 2 and therefore is even.
c Let nth term $=236$

$$
\begin{aligned}
4 n-2 & =236 \\
4 n & =238 \\
n & =59.5
\end{aligned}
$$

n is not an integer, so 236 is not a term in the sequence.
2 a 2 nd term $=9-2^{2}=5$
b 20th term $=9-20^{2}=9-400=-391$
c n^{2} is always positive, so the largest value value $9-n^{2}$ can take is 8 when $n=1$. All values of n above 1 will make $9-n^{2}$ smaller than 8 . So 10 cannot be a term.

3

Term	1		1		3		7		13
First difference		0		2		4		6	
Second difference			2		2		2		
The formula starts n^{2}.									
n	1	2		3		4			
Term	1	1		3		7		13	
n^{2}	1	4		9		16		25	
Term $-n^{2}$	0		-3		-6		-9		-12
Difference		-3		-3		-3		-3	

The linear part of the sequence starts with $-3 n$.
$\begin{array}{lrrrrr}-3 n & -3 & -6 & -9 & -12 & -15 \\ & 3 & 3 & 3 & 3 & 3\end{array}$
nth term $=n^{2}-3 n+3$
Checking:
When $n=1$, term is $1^{2}-3 \times 1+3=1$

$$
\begin{aligned}
& n=2, \text { term is } 2^{2}-3 \times 2+3=1 \\
& n=3, \text { term is } 3^{2}-3 \times 3+3=3
\end{aligned}
$$

Arguments and proofs p. 89

1 The only even prime number is 2.
Hence, statement is false because 2 is a prime number that is not odd.

2 a true: $n=1$ is the smallest positive integer and this would give the smallest value of $2 n+1$, which is 3 .
b true: 3 is a factor of $3(n+1)$ so $3(n+1)$ must be a multiple of 3 .
c false: $2 n$ is always even and subtracting 3 will give an odd number.

3 Let first number $=x$ so next number $=x+1$
Sum of consecutive integers $=x+x+1=2 x+1$
Regardless of whether x is odd or even, $2 x$ will always be even as it is divisible by 2.
Hence $2 x+1$ will always be odd.
4
$(2 x-1)^{2}-(x-2)^{2}=4 x^{2}-4 x+1-\left(x^{2}-4 x+4\right)$

$$
\begin{aligned}
& =4 x^{2}-4 x+1-x^{2}+4 x-4 \\
& =3 x^{2}-3 \\
& =3\left(x^{2}-1\right)
\end{aligned}
$$

The 3 outside the brackets shows that the result is a multiple of 3 for all integer values of x.

5 Let two consecutive odd numbers be $2 n-1$ and $2 n+1$.

$$
\begin{aligned}
(2 n+1)^{2}-(2 n-1)^{2}= & \left(4 n^{2}+4 n+1\right)-\left(4 n^{2}-4 n+1\right) \\
& =8 n
\end{aligned}
$$

Since 8 is a factor of $8 n$, the difference between the squares of two consecutive odd numbers is always a multiple of 8 .
(If you used $2 n+1$ and $2 n+3$ for the two consecutive odd numbers, difference of squares $=8 n+8=8(n+1)$.)

