- c Iron is a liquid.
- d Carbon is more reactive than iron.
- Any metal above iron in the reactivity series; Too expensive/metals above carbon extracted by electrolysis so require more energy.

The blast furnace

- **1** a Carbon + oxygen → carbon dioxide
 - b C(s) + CO₂(g) → 2CO(g) 1 mark for correct formulae and balancing, 1 mark for state symbols
 - c Reduction/redox
 - **d** $2\text{Fe}_2\text{O}_3$ (s) + 3C (s) \rightarrow 4Fe (l) + 3CO_2 (g)
 - e Iron is a liquid
 - f CaSiO₂

The reactions of acids

- Both neutralise acid; Bases are insoluble/ alkalis are soluble bases/alkalis form hydroxide/OH⁻ ions ins solution.
- 2 a Sodium chloride sodium hydroxide and hydrochloric acid.
 - **b** Potassium nitrate potassium carbonate and nitric acid.
 - **c** Copper sulfate copper oxide and sulfuric acid.
- **3 a** Solid dissolves/colourless solution forms.
 - **b** Fizzing occurs with magnesium carbonate.
 - Magnesium oxide + hydrochloric
 acid → magnesium chloride + water
 - d MgCO_o
- 4 a $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$
 - $\begin{array}{ll} \textbf{b} & \text{Li}_2\text{O(s)} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Li}_2\text{SO}_4(\text{aq}) + \\ & \text{H}_2\text{O(l)} \end{array}$
- 5 **a** $Ca(s) + 2H^{+}(aq) \rightarrow Ca^{2+}(aq) + H_{2}(g)$ (reactants; products; state symbols)
 - **b** Ca oxidised; H+/hydrogen reduced.

The preparation of soluble salts

- 1 a Copper carbonate + sulfuric acid → copper sulfate + water + carbon dioxide
 - b Any two from: Copper carbonate dissolves; Fizzing/bubbles/ effervescence; Blue/green solution forms.

- c To ensure all the acid reacts
- d Filtration
- e Copper oxide/copper hydroxide
- f Any one from: Salt lost from spitting during evaporation; Solution left in container; Not all the solution crystallises.
- 2 a Ca(s) + 2HNO₃(aq) → Ca(NO₃)₂(aq) + H₂(g) (reactants; products; state symbols)
 - **b** % yield = 2.6/3.0 x 100; 86.7%
- Possible steps to include: Reactants (zinc/zinc hydroxide/zinc oxide/zinc carbonate) and hydrochloric acid; Correct equation for chosen reactants; Heat acid; Add base until no more reacts/dissolves so the base is in excess; Filter unreacted base; Heat solution on a steam bath until half the water has evaporated; Leave remaining solution to cool so crystals form

Equipment list: Bunsen burner; Heatproof mat; Tripod; Gauze; Beaker; Evaporating dish; Funnel; Filter paper; Conical flask; Spatula; Measuring cylinder; Safety glasses.

Oxidation and reduction in terms of electrons

- 1 a $Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$
 - **b** Mg is oxidised and Cu is reduced.
- 2 a Mg(s) + Zn²⁺(aq) → Mg²⁺(aq) + Zn(s); Mg oxidised, Zn reduced.
 - **b** $2Na(s) + Zn^{2+}(aq) \rightarrow 2Na^{+}(aq) + Zn(s);$ Na oxidised, Zn reduced.
 - c $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$; Cu oxidised, Zn reduced.
 - d $3Ca(s) + 2Fe^{3+}(aq) \rightarrow 3Ca^{2+}(aq) + 2Fe(s)$; Ca oxidised, Fe reduced.

pH scale and neutralisation

- Strong acid pH2 Red, Weak acid pH5 Yellow, Strong alkali pH13 Purple, Weak alkali pH9 Blue, Neutral pH7 Green.
- 2 Hydroxide ion
- 3 H+
- **4** pH1
- **5** pH12
- 6 a Potassium hydroxide
 - **b** $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$
 - **c** $H^+ + OH^- \rightarrow H_2O$ or $2H^+ + 2OH^- \rightarrow 2H_2O$
- 7 OH- and NH,+

Strong and weak acids

- 1 a $HNO_3(aq) \rightarrow H^+(aq) + NO_3^-(aq)$
 - **b** $HCOOH(aq) \rightarrow H^+(aq) + COO^-(aq)$
 - $\begin{array}{ll} \textbf{c} & \text{H}_2\text{SO}_4(\text{aq}) \rightarrow 2\text{H}^+\left(\text{aq}\right) + \text{SO}_4^{\ 2\text{-}}\!\left(\text{aq}\right) \textbf{\textit{or}} \\ & \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{H}^+\left(\text{aq}\right) + \text{HSO}_4^{\ -}\!\left(\text{aq}\right) \end{array}$
- Weak acid only partially ionises in solution; Dilute acid has fewer moles of solute dissolved.

- 3 a 1 x 10⁻³
 - **b** Answer is 100 times greater as if pH decreases by 1, H⁺ concentration increases by 10; 0.1 (overrides previous mark); 1 x 10⁻¹

Electrolysis

- 2 Ions are free to move when molten/ aqueous; Ions in fixed positions/ions can't move in solid lattice.
- 3 a Zinc and chlorine
 - **b** Silver and iodine
 - c Copper and oxygen.
- 4 a $Pb^{2+} + 2e^{-} \rightarrow Pb$; $2Br \rightarrow Br_{2} + 2e^{-}$
 - **b** Lead/lead ions reduced and bromine/ bromide ions oxidised.

Electrolysis of copper(II) sulfate and electroplating

- 1 a Unreactive
 - **b** Copper(II) sulfate
 - c Relights a glowing splint
 - d Copper

$$Cu^{2+} + 2e^- \rightarrow Cu$$

- e Fades, Copper ions form copper
- f Any 2 from: Solution does not fade; No oxygen given off; Anode gets smaller; Cathode gets bigger.
- 2 a In this reaction:
 - i Pure chromium
 - ii Should be the tap
 - **b** Any chromium compound
 - c $Cr^{3+} + 3e^- \rightarrow Cr$

The extraction of metals using electrolysis

- 1 a Strong ionic bonds/strong electrostatic attraction between oppositely charged ions; Requires lots of energy to overcome.
 - **b** So the ions are free to move.
 - **c** Reduce the operating temperature; Saves energy/reduces energy costs.
 - d Electrons are lost.
 - e Al³+ + 3e⁻ → Al (correct; balanced electrons)
 - f They react with the oxygen produced; Carbon + oxygen \rightarrow carbon dioxide/ C + O₂ \rightarrow CO₂
 - g Electricity wasn't discovered/ electricity not needed to extract iron.