Properties of waves

All EM waves travel at $300000000 \mathrm{~m} / \mathrm{s}$. BBC Radio 4 broadcasts at a frequency of 603 kHz .
Calculate the wavelength of the radio wave. (4 marks, $\star \star \star \star$)

Watch out for prefixes and powers. Remember that 1 MHz
means 1 megahertz. This means
1 million hertz or 1000000 Hz .
WORKIT!
a Calculate the period of a radio wave that has a speed of $300000000 \mathrm{~m} / \mathrm{s}$ and frequency of 1 MHz . (2 marks, $\star \star \star$)
Step 1 You do not have to use the wave equation, but you will instead need the following equation provided on the physics equation sheet:

$$
\text { frequency }=\frac{1}{\text { time period }}=\frac{1}{T}(1)
$$

Step 2 Rearrange and then substitute into the equation:

$$
\begin{aligned}
T=\frac{1}{f} & =\frac{1}{1000000} \quad & \begin{array}{l}
\text { You can leave the number in } \\
\text { standard form as it is very small, } \\
\\
\end{array}=1 \times 10^{-6} \mathrm{~s}(1) \longleftarrow & \text { otherwise it is } 0.000001 \mathrm{~s} .
\end{aligned}
$$

b Calculate the wavelength of the radio wave. (1 mark, $\star \star$)
Use formula $v=f \times \lambda$ and rearrange:

$$
\begin{array}{rlr}
\lambda=\frac{v}{f} & =\frac{3 \times 10^{8}}{1 \times 10^{6}} \\
& =\frac{300000000}{1000000} \quad & \text { Don't forget to include the } \\
& =300 \mathrm{~m}(1) & \text { units in your final answer. }
\end{array}
$$

