Edexcel GCSE (9—1) Biology For GCSE exams 2018 onwards Higher Tier spec points in bold, (B) indicates Biology only	Revision Guide page reference ISBN 9781407176864	Exam Practice Book page reference ISBN 9781407176871	Revision Guide and Practice Book ISBN 9781407176888
Topics common to paper 1 and paper 2			
Topic 1 – Key concepts in biology Students should:			
1.1 Explain how the sub-cellular structures of eukaryotic and prokaryotic cells are related to their functions, including: a animal cells – nucleus, cell membrane, mitochondria and ribosomes b plant cells – nucleus, cell membrane, cell wall, chloroplasts, mitochondria, vacuole and ribosomes c bacteria – chromosomal DNA, plasmid DNA, cell membrane, ribosomes and flagella	8, 9	8, 9	10, 11, 164, 165
1.2 Describe how specialised cells are adapted to their function, including: a sperm cells – acrosome, haploid nucleus, mitochondria and tail b egg cells – nutrients in the cytoplasm, haploid nucleus and changes in the cell membrane after fertilisation c ciliated epithelial cells	10	10	12, 166
1.3 Explain how changes in microscope technology, including electron microscopy, have enabled us to see cell structures with more clarity and detail than in the past and increased our understanding of the role of sub-cellular structures	12	11	14, 167
1.4 Demonstrate an understanding of number, size and scale, including the use of estimations and explain when they should be used	8	8, 11	10, 164, 167

1.5 Demonstrate an understanding of the relationship between quantitative	8	8, 11	10, 164, 167
units in relation to cells, including:	O	0, 11	10, 104, 107
a milli (10–3)			
b micro (10–6)			
c nano (10–9)			
d pico (10–12)			
e calculations with numbers written in standard form			
1.6 Core Practical: Investigate biological specimens using microscopes,	15	13	17, 169
including magnification calculations and labelled scientific drawings from			,
observations			
1.7 Explain the mechanism of enzyme action including the active site and	30, 31	21, 22	32, 33, 177, 178
enzyme specificity			
1.8 Explain how enzymes can be denatured due to changes in the shape of the	30, 31	21, 22	32, 33, 177, 178
active site			
1.9 Explain the effects of temperature, substrate concentration and pH on	30, 31	21, 22	32, 33, 177, 178
enzyme activity			
1.10 Core Practical: Investigate the effect of pH on enzyme activity	33	24	35, 180
1.11 Demonstrate an understanding of rate calculations for enzyme activity	31	24	33, 180
1.12 Explain the importance of enzymes as biological catalysts in the synthesis	29	21, 22, 23	31, 177, 178, 179
of carbohydrates, proteins and lipids and their breakdown into sugars, amino			
acids and fatty acids and glycerol			
1.13(B) Core Practical: Investigate the use of chemical reagents to identify	32	23	34, 179
starch, reducing sugars, proteins and fats			
1.14(B) Explain how the energy contained in food can be measured using	29	-	31
calorimetry			
1.15 Explain how substances are transported into and out of cells, including	21, 22, 23, 24, 26	17, 18, 20	23, 24, 25, 26, 28,
by diffusion, osmosis and active transport			173, 174, 176
1.16 Core Practical: Investigate osmosis in potatoes	25	19	27, 175
1.17 Calculate percentage gain and loss of mass in osmosis	24, 25	19	26, 27, 175
Topics for Paper 1			
10 p.00 101 1 apol 1			

Topic 2 – Cells and control			
Students should:			
2.1 Describe mitosis as part of the cell cycle,	18	15	20, 171
including the stages interphase, prophase, metaphase, anaphase and			
telophase and cytokinesis			
2.2 Describe the importance of mitosis in growth, repair and asexual	18	15	20, 171
reproduction			
2.3 Describe the division of a cell by mitosis as the	18	15	20, 171
production of two daughter cells, each with identical sets of chromosomes in			
the nucleus to the parent cell, and that this results in the formation of two			
genetically identical diploid body cells			
2.4 Describe cancer as the result of changes in cells that lead to uncontrolled	43	30	45, 186
cell division			
2.5 Describe growth in organisms, including:	11	10	13, 166
a cell division and differentiation in animals			
b cell division, elongation and differentiation in plants			
2.6 Explain the importance of cell differentiation in the development of	10, 11	10	12, 13, 166
specialised cells			
2.7 Demonstrate an understanding of the use of percentiles charts to monitor	18	15	20, 171
growth			
2.8 Describe the function of embryonic stem cells, stem cells in animals and	19, 20	16	21, 22, 172
meristems in plants			
2.9 Discuss the potential benefits and risks associated with the use of stem	19, 20	16	21, 22, 172
cells in medicine			
2.10(B) Describe the structures and functions of the brain including the	78	51	80, 207
cerebellum, cerebral hemispheres and medulla oblongata			
2.11(B) Explain how the difficulties of accessing brain tissue inside the skull	78	51	80, 207
can be overcome by using CT scanning and PET scanning to investigate brain			
function			
2.12(B) Explain some of the limitations in treating damage and disease in the	78	51	80, 207
brain and other parts of the nervous system, including spinal injuries and			
brain tumours			

2.13 Explain the structure and function of sensory receptors, sensory neurones, relay neurones in the CNS, motor neurones and synapses in the	74,75	49	76, 77, 205
transmission of electrical impulses, including the axon, dendron, myelin sheath and the role of neurotransmitters			
2.14 Explain the structure and function of a reflex arc including sensory, relay and motor neurones	75	49	77, 205
2.15(B) Explain the structure and function of the eye as a sensory receptor including the role of: a the cornea and lens b the iris c rod and cone cells in the retina	79	51	81, 207
2.16(B) Describe defects of the eye including cataracts, long-sightedness, short-sightedness and colour blindness	80	52	82, 208
2.17(B) Explain how cataracts, long-sightedness and short-sightedness can be corrected	80	52	82, 208
Topic 3 – Genetics			
Students should:			
3.1(B) Explain some of the advantages and disadvantages of asexual	98, 99	65	100, 101, 221
reproduction, including the lack of need to find a mate, a rapid reproductive			
cycle, but no variation in the population			
3.2(B) Explain some of the advantages and disadvantages of sexual	98, 99	65	100, 101, 221
reproduction, including variation in the population, but the requirement to find a mate			
3.3 Explain the role of meiotic cell division, including the production of four daughter cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid gametes (the stages of meiosis are not required)	100	66	102, 222
3.4 Describe DNA as a polymer made up of: a two strands coiled to form a	101	67, 68	103, 223, 224
double helix b strands linked by a series of complementary base pairs joined			
together by weak hydrogen bonds c nucleotides that consist of a sugar and			
phosphate group with one of the four different bases attached to the sugar			
3.5 Describe the genome as the entire DNA of an organism and a gene as a	101	67, 68	103, 223, 224
section of a DNA molecule that codes for a specific protein			
3.6 Explain how DNA can be extracted from fruit	101	67	103, 223

	68	104, 105, 224
103, 104	68, 69	105, 106, 224, 225
103, 104	68, 69	105, 106, 224, 225
102, 103, 104	68, 69	104, 105, 106, 224,
		225
119	77	121, 233
105	70	107, 226
105	70	107, 226
106, 107, 108	70, 71	108, 109, 110, 226,
		227
109	70, 71	110, 226, 227
	102, 103, 104 119 105 106, 107, 108	103, 104 68, 69 102, 103, 104 68, 69 119 77 105 70 106, 107, 108 70, 71

3.16 Calculate and analyse outcomes (using probabilities, ratios and	107, 108	71	109, 110, 227
percentages) from monohybrid crosses and pedigree analysis for dominant			
and recessive traits			
3.17(B) Describe the inheritance of the ABO blood groups with reference to	107	71	109, 227
codominance and multiple alleles			
3.18(B) Explain how sex-linked genetic disorders are inherited	109	71	111, 227
3.19 State that most phenotypic features are the result of multiple genes	105	70	107, 226
rather than single gene inheritance			
3.20 Describe the causes of variation that influence phenotype, including: a	104, 110	72	106, 112, 228
genetic variation – different characteristics as a result of mutation and sexual			
reproduction b environmental variation – different characteristics caused by			
an organism's environment (acquired characteristics)			
3.21 Discuss the outcomes of the Human Genome Project and its potential	110	72	112, 228
applications within medicine			
3.22 State that there is usually extensive genetic variation within a population	110	72	112, 228
of a species and that these arise through mutations			
3.23 State that most genetic mutations have no effect on the phenotype,	104	72	106, 228
some mutations have a small effect on the phenotype and, rarely, a single			
mutation will significantly affect the phenotype			
Topic 4 – Natural selection and genetic modification			
Students should:			
4.1(B) Describe the work of Darwin and Wallace in the development of the	117	73, 76	119, 229, 232
theory of evolution by natural selection and explain the impact of these ideas		10,10	
on modern biology			
4.2 Explain Darwin's theory of evolution by natural selection	111, 117	73, 76	113, 119, 229, 232
4.3 Explain how the emergence of resistant organisms supports Darwin's	120, 121	38, 73	122, 123, 194, 113
theory of evolution including antibiotic resistance in bacteria	,		,,,,
· · · · · · · · · · · · · · · · · · ·	120	76	122 222
4.4 Describe the evidence for human evolution, based on fossils, including:	120	70	122, 232
a Ardi from 4.4 million years ago			
b Lucy from 3.2 million years ago			
c Leakey's discovery of fossils from 1.6 million years ago			

4.5 Describe the evidence for human evolution based on stone tools, including:	120	76	122, 232
a the development of stone tools over time b how these can be dated from their environment			
4.6(B) Describe how the anatomy of the pentadactyl limb provides scientists with evidence for evolution	120	76	122, 232
4.7 Describe how genetic analysis has led to the suggestion of the three domains rather than the five kingdoms classification method	122, 123	78	124, 125, 234
4.8 Explain selective breeding and its impact on food plants and domesticated animals	112	74	114, 230
4.9(B) Describe the process of tissue culture and its advantages in medical research and plant breeding programmes	115	75	117, 231
4.10 Describe genetic engineering as a process which involves modifying the genome of an organism to introduce desirable characteristics	113, 114	75	115, 116, 231
4.11 Describe the main stages of genetic engineering including the use of: a restriction enzymes b ligase c sticky ends d vectors	113, 114	75	115, 116, 231
4.12(B) Explain the advantages and disadvantages of genetic engineering to produce GM organisms including the modification of crop plants, including the introduction of genes for insect resistance from <i>Bacillus thuringiensis</i> into crop plants	113	75	115, 231
4.13(B) Explain the advantages and disadvantages of agricultural solutions to the demands of a growing human population, including use of fertilisers and biological control	144	94	146, 250
4.14 Evaluate the benefits and risks of genetic engineering and selective breeding in modern agriculture and medicine, including practical and ethical implications	113, 114	74, 75	115,116, 230, 231
Topic 5 – Health, disease and the development of medicines <i>Students should:</i>			

5.1 Describe health as a state of complete physical, mental and social well-	40	29	42, 185
being and not merely the absence of disease or infirmity, as defined by the			,
World Health Organization (WHO)			
5.2 Describe the difference between communicable and non-communicable	40	29	42, 185
diseases			,
5.3 Explain why the presence of one disease can lead to a higher susceptibility	40,41	29	42, 43, 185
to other diseases			
5.4 Describe a pathogen as a disease-causing organism, including viruses,	48	33, 34, 35	50, 189, 190, 191
bacteria, fungi and protists			
5.5 Describe some common infections, including:	48, 49, 50, 51, 52	33, 34, 35	50, 51, 52, 53, 54,
a cholera (bacteria) causes diarrhoea			189, 190, 191
b tuberculosis (bacteria) causes lung damage			
c Chalara ash dieback (fungi) causes leaf loss and bark lesions			
d malaria (protists) causes damage to blood and liver			
e HIV (virus) destroys white blood cells, leading to the onset of AIDS			
f stomach ulcers caused by Helicobacter (bacteria)			
g Ebola (virus) causes haemorrhagic fever			
5.6 Explain how pathogens are spread and how this spread can be reduced or	48, 49, 50, 51, 52	33, 34, 35	50, 51, 52, 53, 54,
prevented, including:			189, 190, 191
a cholera (bacteria) – water			
b tuberculosis (bacteria) – airborne			
c Chalara ash dieback (fungi) – airborne			
d malaria (protists) – animal vectors			
e stomach ulcers caused by Helicobacter (bacteria) – oral transmission			
f Ebola (virus) – body fluids			
5.7(B) Describe the lifecycle of a virus, including lysogenic and lytic pathways	50	33	52, 189
5.8 Explain how sexually transmitted infections (STIs) are spread and how this	51	33, 34, 35	53, 189, 190, 191
spread can be reduced or prevented, including: a Chlamydia (bacteria) b HIV			
(virus)			
5.9(B) Describe how some plants defend themselves against attack from pests	61	41	63, 197
and pathogens by physical barriers, including the leaf cuticle and cell wall			

5.10(B) Describe how plants defend themselves against attack from pests and	61	41	63, 197
pathogens by producing chemicals, some of which can be used to treat			33, 23
human diseases or relieve symptoms			
5.11(B) Describe different ways plant diseases can be detected and	59, 60	41	61, 62, 197
identified, in the lab and in the field including the elimination of possible	,		, ,
environmental causes, distribution analysis of affected plants, observation			
of visible symptoms and diagnostic testing to identify pathogens			
5.12 Describe how the physical barriers and chemical defences of the human	53	36	55, 192
body provide protection from pathogens, including: a physical barriers,			
including mucus, cilia and skin b chemical defence, including lysozymes and			
hydrochloric acid			
5.13 Explain the role of the specific immune system of the human body in	53	36, 37	55, 192, 193
defence against disease, including:			
a exposure to pathogen			
b the antigens trigger an immune response which causes the production of			
antibodies			
c the antigens also trigger production of memory lymphocytes			
d the role of memory lymphocytes in the secondary response to the antigen			
5.14 Explain the body's response to immunisation using an inactive form of a	54	37	56, 193
pathogen			
5.15(B) Discuss the advantages and disadvantages of immunisation, including	54	37	56, 193
the concept of herd immunity			
5.16 Explain that antibiotics can only be used to treat bacterial infections	55	38	57, 194
because they inhibit cell processes in the bacterium but not the host organism			
5.17(B) Explain the aseptic techniques used in culturing microorganisms in the	13, 14	12	15, 16, 168
laboratory, including the use of an autoclave to prepare sterile growth			
medium and petri dishes, the use of sterile inoculating loops to transfer			
microorganisms and the need to keep petri dishes and culture vials covered			
5.18(B) Core Practical: Investigate the effects of antiseptics, antibiotics or	17	14	19, 170
plant extracts on microbial cultures			
5.19(B) Calculate cross-sectional areas of bacterial cultures and clear agar jelly	14	14	16, 170
using πr^2			

5.20 Describe that the process of developing new medicines, including antibiotics, has many stages, including discovery, development, preclinical	56	39	58, 195
and clinical testing			
5.21(B) Describe the production of monoclonal antibodies, including:	57	40	59, 196
a use of lymphocytes which produce desired antibodies but do not divide			
b production of hybridoma cells			
c hybridoma cells produce antibodies as they divide			
5.22(B) Explain the use of monoclonal antibodies, including:	57	40	59, 196
a in pregnancy testing			
b in diagnosis including locating the position of blood clots and cancer cells			
and in treatment of diseases including cancer			
c the advantages of using monoclonal antibodies to target specific cells			
compared to drug and radiotherapy treatments	40 41 42 42	20. 20	42 42 44 45 405
5.23 Describe that many non-communicable human diseases are caused by the interaction of a number of factors, including cardiovascular diseases,	40, 41, 42, 43	29, 30	42, 43, 44, 45, 185 186
many forms of cancer, some lung and liver diseases and diseases influenced			100
by nutrition			
5.24 Explain the effect of lifestyle factors on non-communicable diseases at	42	29	44, 185
local, national and global levels, including:			1.1, 200
a exercise and diet on obesity and malnutrition, including BMI and waist: hip			
calculations, using the BMI equation:			
$BMI = \frac{weight (kg)}{(height (m))^2}$			
$BMI = \frac{1}{(height (m))^2}$			
b alcohol on liver diseases			
c smoking on cardiovascular diseases			
${\bf 5.25}\ Evaluate\ some\ different\ treatments\ for\ cardiovascular\ disease,\ including:$	38, 39	28	40, 41, 184
a life-long medication			
b surgical procedures			
c lifestyle changes			

Topics for Paper 2			
Topic 6 – Plant structures and their functions Students should:			
6.1 Describe photosynthetic organisms as the main producers of food and therefore biomass	63, 130	83	65, 132, 239
6.2 Describe photosynthesis in plants and algae as an endothermic reaction that uses light energy to react carbon dioxide and water to produce glucose and oxygen	63	42	65, 198
6.3 Explain the effect of temperature, light intensity and carbon dioxide concentration as limiting factors on the rate of photosynthesis	64, 65	43	66, 67, 199
6.4 Explain the interactions of temperature, light intensity and carbon dioxide concentration in limiting the rate of photosynthesis	64, 65	43	66, 67, 199
6.5 Core Practical: Investigate the effect of light intensity on the rate of photosynthesis	66	44	68, 200
6.6 Explain how the rate of photosynthesis is directly proportional to light intensity and inversely proportional to the distance from a light source, including the use of the inverse square law calculation	65	43, 44	67, 199, 200
6.7 Explain how the structure of the root hair cells is adapted to absorb water and mineral ions	10, 45	20, 31, 32	12, 47, 176, 187, 188
6.8 Explain how the structures of the xylem and phloem are adapted to their function in the plant, including: a lignified dead cells in xylem transporting water and minerals through the plant b living cells in phloem using energy to transport sucrose around the plant	45, 46	31, 32	47, 48, 187, 188
6.9 Describe how water and mineral ions are transported through the plant by transpiration, including the structure and function of the stomata	45, 46	31, 32	47, 48, 187, 188
6.10 Describe how sucrose is transported around the plant by translocation	45	32	47, 188
6.11(B) Explain how the structure of a leaf is adapted for photosynthesis and gas exchange	44	31, 42	46, 187, 198

6.12 Explain the effect of environmental factors on the rate of water uptake by a plant, to include light intensity, air movement and temperature	46	32	48, 188
6.13 Demonstrate an understanding of rate calculations for transpiration	46	32	48, 188
6.14(B) Explain how plants are adapted to survive in extreme environments including the effect of leaf size and shape, the cuticle and stomata	46	32	48, 188
6.15(B) Explain how plant hormones control and coordinate plant growth and development, including the role of auxins in phototropisms and gravitropisms 5a	95	63	97, 219
6.16(B) Describe the commercial uses of auxins, gibberellins and ethene in plants, including: a auxins in weedkillers and rooting powders b gibberellins in germination, fruit and flower formation and the production of seedless fruit c ethene in fruit ripening	95	63	97, 219
Topic 7 – Animal coordination, control and homeostasis <i>Students should:</i>			
7.1 Describe where hormones are produced and how they are transported from endocrine glands to their target organs, including the pituitary gland, thyroid gland, pancreas, adrenal glands, ovaries and testes	82	54	84, 210
7.2 Explain that adrenalin is produced by the adrenal glands to prepare the body for fight or flight, including: a increased heart rate b increased blood pressure c increased blood flow to the muscles d raised blood sugar levels by stimulating the liver to change glycogen into glucose	94	62	96, 218
7.3 Explain how thyroxine controls metabolic rate as an example of negative feedback, including: a low levels of thyroxine stimulates production of TRH in hypothalamus b this causes release of TSH from the pituitary gland c TSH acts on the thyroid to produce thyroxine	94	62	96, 218

d when thyroxine levels are normal thyroxine inhibits the release of TRH			
and the production of TSH			
7.4 Describe the stages of the menstrual cycle, including the roles of the	90, 91	59	92, 93, 215
hormones oestrogen and progesterone, in the control of the menstrual cycle			
7.5 Explain the interactions of oestrogen, progesterone, FSH and LH in the	90, 91	59	92, 93, 215
control of the menstrual cycle, including the repair and maintenance of the			
uterus wall, ovulation and menstruation			
7.6 Explain how hormonal contraception influences the menstrual cycle and	92	60	94, 216
prevents pregnancy			
7.7 Evaluate hormonal and barrier methods of contraception	92	60	94, 216
7.8 Explain the use of hormones in Assisted Reproductive Technology (ART)	93	61	95, 217
including IVF and clomifene therapy			
7.9 Explain the importance of maintaining a constant internal environment in	73	48	75, 204
response to internal and external change			
7.10(B) Explain the importance of homeostasis, including:	73	48	75, 204
a thermoregulation – the effect on enzyme activity			
b osmoregulation – the effect on animal cells			
7.11(B) Explain how thermoregulation takes place, with reference to the	81	53	83, 209
function of the skin, including:			
a the role of the dermis			
b the role of the epidermis			
c the role of the hypothalamus			
7.12(B) Explain how thermoregulation takes place, with reference to:	81	53	83, 209
a shivering			
b vasoconstriction			
c vasodilation			
7.13 Explain how the hormone insulin controls blood glucose concentration	83	55	85, 211
7.14 Explain how blood glucose concentration is regulated by glucagon	83	55	85, 211
7.15 Explain the cause of type 1 diabetes and how it is controlled	84, 85	56	86, 87, 212
7.16 Explain the cause of type 2 diabetes and how it is controlled	84, 85	56	86, 87, 212

7.17 Evaluate the correlation between body mass and type 2 diabetes including waist:hip calculations and BMI, using the BMI equation: weight (kg)	84	56	86, 212
$BMI = \frac{weight (kg)}{(height (m))^2}$			
7.18(B) Describe the structure of the urinary system	86, 87	57	88, 89, 213
7.19(B) Explain how the structure of the nephron is related to its function in filtering the blood and forming urine including: a filtration in the glomerulus and Bowman's capsule b selective reabsorption of glucose c reabsorption of water	86	57	88, 213
7.20(B) Explain the effect of ADH on the permeability of the collecting duct	88	57	90, 213
in regulating the water content of the blood	00	50	04.244
7.21(B) Describe the treatments for kidney failure, including kidney dialysis and organ donation	89	58	91, 214
7.22(B) State that urea is produced from the breakdown of excess amino acids in the liver	87	57	89, 213
Topic 8 – Exchange and transport in animals Students should:			
8.1 Describe the need to transport substances into and out of a range of organisms, including oxygen, carbon dioxide, water, dissolved food molecules, mineral ions and urea	22	17	24, 173
8.2 Explain the need for exchange surfaces and a transport system in multicellular organisms including the calculation of surface area : volume ratio	22	17	24, 173
8.3 Explain how alveoli are adapted for gas exchange by diffusion between air in the lungs and blood in capillaries	35	26	37, 182
8.4(B) Describe the factors affecting the rate of diffusion, including surface area, concentration gradient and diffusion distance	21	17	23, 173
8.5(B) Calculate the rate of diffusion using Fick's law:	21	17	23, 173
rate of diffusion $\propto \frac{surface\ area\ \times concentration\ difference}{thickness\ of\ membrane}$			

83
1, 202
2, 203
235
237
-57
237
1

9.5 Core Practical: Investigate the relationship between organisms and their environment using field-work techniques, including quadrats and belt transects	133	84	135, 240
9.6 Explain how to determine the number of organisms in a given area using raw data from field-work techniques, including quadrats and belt transects	131, 132	84, 85	133, 134, 240, 241
9.7(B)Explain how some energy is transferred to less useful forms at each trophic level and that this affects the number of organisms at each trophic level, limits the length of a food chain and determines the shape of a pyramid of biomass in an ecosystem	142, 143	93	144, 145, 249
9.8(B) Calculate the efficiency of energy transfers between trophic levels and percentage calculations of biomass	142, 143	93	144, 145, 249
9.9 Explain the positive and negative human interactions within ecosystems and their impacts on biodiversity, including: a fish farming b introduction of non-indigenous species c eutrophication	138	90, 92	140, 246, 248
9.10 Explain the benefits of maintaining local and global biodiversity, including the conservation of animal species and the impact of reforestation	139	90, 92	141, 246, 248
9.11(B) Describe the biological factors affecting levels of food security, including: a increasing human population b increasing animal farming and the increased meat and fish consumption c the impact of new pests and pathogens d environmental change caused by human activity e sustainability issues, e.g. use of land for biofuel production and the cost of agricultural inputs	144	94	146, 250
9.12 Describe how different materials cycle through the abiotic and biotic components of an ecosystem	127, 128	80, 81, 86	129, 130, 236, 237, 242
9.13 Explain the importance of the carbon cycle, including the processes involved and the role of microorganisms as decomposers	134	86	136, 242

9.14 Explain the importance of the water cycle, including the processes involved and the production of potable water in areas of drought including desalination	135	86	137, 242
9.15 Explain how nitrates are made available for plant uptake, including the use of fertilisers, crop rotation and the role of bacteria in the nitrogen cycle	134	86	136, 242
9.16(B) Evaluate the use of indicator species as evidence to assess the level of pollution, including: a polluted water – bloodworm, sludgeworm b clean water – freshwater shrimps, stonefly c air quality – different species of lichen, blackspot fungus on roses	139	90, 92	141, 246, 248
9.17(B) Explain the effects of temperature, water content and oxygen availability on the rate of decomposition in food preservation	136	87	138, 243
9.18(B) Explain the effects of temperature, water content and oxygen availability on the rate of decomposition in composting	136	87	138, 243
9.19(B) Calculate rate changes in the decay of biological material	136, 137	88	138, 139, 244